Revista Chapingo Serie Ciencias Forestales y del Ambiente
Effects of forest management on the physical and hydrological properties of an Umbrisol in the Sierra Madre Occidental
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF

Keywords

regeneration cuttings
Seed trees
post-fire
clear cutting
soil quality

How to Cite

Luna-Robles, E. O., Cantú-Silva, I., González-Rodríguez, H., Marmolejo-Monsiváis, J. G., Yáñez-Díaz, M. I., Hernández, F. J., & Béjar-Pulido, S. J. (2020). Effects of forest management on the physical and hydrological properties of an Umbrisol in the Sierra Madre Occidental. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 27(1), 19–32. https://doi.org/10.5154/r.rchscfa.2019.11.085

##article.highlights##

  • The effect of regeneration cuttings (parent trees, clear cutting and selection) was evaluated in an Umbrisol.
  • The mechanical resistance to penetration was superior in the clearing stand.
  • Infiltration, humus and leaf litter were lower in clear cutting.
  • The cutting of parent trees and selection did not cause significant changes in the soil.
  • There is a significant negative correlation of apparent density with permeability and porosity.

Abstract

Introduction: Land uses associated with anthropogenic activities affect soil quality negatively.
Objective: To determine the effect of regeneration cuts on the physical and hydrological properties of an Umbrisol.
Materials and methods: In each stand (parent trees [PT], clear cutting, selection, regenerated area [post-fire] and reference [R]), in situ tests were performed and four samples composed of soil by depth (0 to 20 cm and 20 to 40 cm) were collected. Data were analyzed by Kruskal-Wallis and ANOVA tests. The physical variables (apparent density [AD], porosity, silt, leaf litter and humus, mechanical resistance to penetration [MRP], sand and clay) and hydrological variables (infiltration, field capacity, permanent wilt point, available water and permeability) were related by means of the Spearman correlation coefficient.
Results and discussion: Differences were significant (P ≤ 0.01) in MRP, sand and clay in the forest stand factor. For the depth factor, all the variables were similar, except for the MRP; its increase in clear cutting was higher than 100 %, with respect to R. The interaction was only significant (P ≤ 0.01) for the sand percentage. The Kruskal-Wallis test (P ≤ 0.05) indicated that infiltration, humus and litter were lower in clear cutting. There is a significant negative correlation (P ≤ 0.01) of AD with permeability, porosity, clay and sand. PT and clear cuttings increased AD (24.28 and 37.58 %) and MRP (32.59 and 222.22 %), with respect to R.
Conclusion: PT and selection cuts did not cause significant variations in properties such as those of a total cut (clear cutting).

https://doi.org/10.5154/r.rchscfa.2019.11.085
PDF

References

Amoakwah, E., Frimpong, K. A., Okae-Anti, D., & Arthur, E. (2017). Soil water retention, air flow and pore structure characteristics after corn cob biochar application to a tropical sandy loam. Geoderma, 307, 189‒197. doi: https://doi.org/10.1016/j.geoderma.2017.08.025

Archer, N. A., Otten, W., Schmidt, S., Bengough, A. G., Shah, N., & Bonell, M. (2016). Rainfall infiltration and soil hydrological characteristics below ancient forest, planted forest and grassland in a temperate northern climate. Ecohydrology, 9(4), 585‒600. doi: https://doi.org/10.1002/eco.1658

Bai, Z., Caspari, T., Gonzalez, M. R., Batjes, N. H., Mäder, P., Bünemann, E. K., ...Reintam, E. (2018). Effects of agricultural management practices on soil quality: A review of long-term experiments for Europe and China. Agriculture, Ecosystems & Environment, 265, 1‒7. doi: https://doi.org/10.1016/j.agee.2018.05.028

Bhattacharyya, T., & Pal, D. K. (2015). The soil: A natural resource. Retrieved from https://www.researchgate.net/publication/304057204_The_soil_a_natural_resource

Bünemann, E. K., Bongiorno, G., Bai, Z., Creamer, R. E., De Deyn, G., de Goede, R., Pulleman, M., …Brussaard, L. (2018). Soil quality–A critical review. Soil Biology and Biochemistry, 120, 105‒125. doi: https://doi.org/10.1016/j.soilbio.2018.01.030

Cambi, M., Certini, G., Fabiano, F., Foderi, C., Laschi, A., & Picchio, R. (2016). Impact of wheeled and tracked tractors on soil physical properties in a mixed conifer stand. iForest-Biogeosciences and Forestry, 9(1), 89‒94. doi: https://doi.org/10.3832/ifor1382-008

Cambi, M., Certini, G., Neri, F., & Marchi, E. (2015). The impact of heavy traffic on forest soils: A review. Forest Ecology and Management, 338, 124‒138. doi: https://doi.org/10.1016/j.foreco.2014.11.022

Cambi, M., Hoshika, Y., Mariotti, B., Paoletti, E., Picchio, R., Venanzi, R., & Marchi, E. (2017). Compaction by a forest machine affects soil quality and Quercus robur L. seedling performance in an experimental field. Forest Ecology and Management, 384, 406‒414. doi: https://doi.org/10.1016/j.foreco.2016.10.045

Das, B. M. (2002). Soil mechanics laboratory manual (6th ed.). Oxford, NY: Oxford University Press.

Di Prima, S., Bagarello, V., Angulo-Jaramillo, R., Bautista, I., Cerdà, A., Del Campo, A., ...Maetzke, F. (2017). Impacts of thinning of a Mediterranean oak forest on soil properties influencing water infiltration. Journal of Hydrology and Hydromechanics, 65(3), 276‒286. doi: https://doi.org/10.1515/johh-2017-0016

Dueñez, A. J., Gutiérrez, J., Pérez, L., & Návar, J. (2006). Manejo silvícola, capacidad de infiltración, escurrimiento superficial y erosión. Terra Latinoamericana, 24(2), 233‒240. Retrieved from https://www.redalyc.org/pdf/573/57311108010.pdf

Edlund, J., Keramati, E., & Servin, M. (2013). A long-tracked bogie design for forestry machines on soft and rough terrain. Journal of Terramechanics, 50(2), 73‒83. doi: https://doi.org/10.1016/j.jterra.2013.02.001

Food and Agriculture Organization (FAO). (2019). Aumentan las emisiones de gases de efecto invernadero de la agricultura. Retrieved October 29, 2019 from http://www.fao.org/news/story/es/item/218907/icode/

Gaspar-Santos, E. S., González-Espinosa, M., Ramírez-Marcial, N., & Álvarez-Solís, J. D. (2015). Acumulación y descomposición de hojarasca en bosques secundarios del sur de la Sierra Madre de Chiapas, México. Bosque (Valdivia), 36(3), 467‒480. doi: https://doi.org/10.4067/S0717-92002015000300013

Ghestem, M., Sidle, R. C., & Stokes, A. (2011). The influence of plant root systems on subsurface flow: implications for slope stability. Bioscience, 61(11), 869‒879. doi: https://doi.org/10.1525/bio.2011.61.11.6

González-Elizondo, M. S., González-Elizondo, M., Tena-Flores, J. A., Ruacho-González, L., & López-Enríquez, I. (2012). Vegetación de la Sierra Madre Occidental, México: Una síntesis. Acta Botánica Mexicana, 100, 351–403. doi: https://doi.org/10.21829/abm100.2012.40

Hernández, F. J., Deras-Ávila, A. G., Deras-Ávila, N. I., & Colín, J. G. (2019). Influence of the seed tree method on the diversity of regeneration in a mixed forest in Durango, Mexico. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 25(2), 219–234. doi: https://doi.org/10.5154/r.rchscfa.2018.09.066

Instituto Nacional de Estadística y Geografía (INEGI). 2005. Prontuario de información geográfica municipal de los Estados Unidos Mexicanos. Clave geoestadística. Pueblo Nuevo, Durango, México. Retrieved from http://www3.inegi.org.mx/contenidos/app/mexicocifras/datos_geograficos/10/10023.pdf

International Business Machines (IBM). (2013). IBM SPSS Statistics for Windows, version 22.0. Armonk, NY, USA: IBM Corp.

IUSS Working Group WRB. (2015). Base referencial mundial del recurso suelo 2014. Actualización 2015. Sistema internacional de clasificación de suelos para la nomenclatura de suelos y la creación de leyendas de mapas de suelos. Rome, Italy: Food and Agriculture Organization (FAO). Retrieved from http://www.fao.org/3/i3794es/I3794es.pdf

Jain, T. B., Gould, W. A., Graham, R. T., Pilliod, D. S., Lentile, L. B., & González, G. (2008). A soil burn severity index for understanding soil-fire relations in tropical forests. AMBIO: A Journal of the Human Environment, 37(7-8), 563–568. Retrieved from https://www.fs.fed.us/rm/pubs_other/rmrs_2008_jain_t001.pdf

Karlin, S., Salazar, B. J., Cora, A., Sánchez, S., Arnulphi, S., & Accietto, R. (2019). Cambios en el uso del suelo: capacidad de infiltración en el centro de Córdoba (Argentina). Ciencia del Suelo, 37(2). Retrieved from https://www.researchgate.net/publication/338052610_CAMBIOS_EN_EL_USO_DEL_SUELO_CAPACIDAD_DE_INFILTRACION_EN_EL_CENTRO_DE_CORDOBA_ARGENTINA

Klute, A., & Dirksen, C. (1986). Hydraulic conductivity and diffusivity: Laboratory methods. In A. Klute (Ed.), Methods of soil analysis: part 1—physical and mineralogical methods, (2nd. ed., pp. 687–734). USA: American Society of Agronomy, Inc. doi: https://doi.org/10.2136/sssabookser5.1.2ed.c28

Kopittke, P. M., Menzies, N. W., Wang, P., McKenna, B. A., & Lombi, E. (2019). Soil and the intensification of agriculture for global food security. Environment International, 132. doi: https://doi.org/10.1016/j.envint.2019.105078

Landini, A. M., Martínez, D., Días, H., Soza, E., Agnes, D., & Sainato, C. (2007). Modelos de infiltración y funciones de pedotransferencia aplicados a suelos de distinta textura. Ciencia del Suelo, 25(2), 123–131. Retrieved from http://suelos.org.ar/publicaciones/vol_25n2/25_2_landini_123_131.pdf

Leung, A. K., Garg, A., Coo, J. L., Ng, C. W. W., & Hau, B. C. H. (2015). Effects of the roots of Cynodon dactylon and Schefflera heptaphylla on water infiltration rate and soil hydraulic conductivity. Hydrological Processes, 29(15), 3342–3354. doi: https://doi.org/10.1002/hyp.10452

López-Hernández, J. A., Aguirre-Calderón, Ó. A., Alanís-Rodríguez, E., Monárrez-González, J. C., González-Tagle, M. A., & Jiménez-Pérez, J. (2017). Composición and diversidad de especies forestales en bosques templados de Puebla, México. Madera y Bosques, 23(1), 39–51. doi: https://doi.org/10.21829/myb.2017.2311518

Marchi, E., Picchio, R., Mederski, P. S., Vusić, D., Perugini, M., & Venanzi, R. (2016). Impact of silvicultural treatment and forest operation on soil and regeneration in Mediterranean Turkey oak (Quercus cerris L.) coppice with standards. Ecological Engineering, 95, 475–484. doi: https://doi.org/10.1016/j.ecoleng.2016.06.084

Medina, G. R., Cantú, S. I., González, H., Pando, M. M., Kubota, T., & Gómez, M. M. V. (2017). Efectos del rodillo aireador y el fuego en las propiedades físicas e hidrológicas del suelo en matorrales de Coahuila, México. Agrociencia, 51(5), 471–485. Retrieved from http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-31952017000500471

Montanarella, L. (2015). Agricultural policy: Govern our soils. Nature News, 528(7580), 32. doi: https://doi.org/10.1038/528032a

Muñoz-Rojas, M. (2018). Soil quality indicators: a critical tool in ecosystem restoration. Current Opinion in Environmental Science & Health, 5, 47–52. doi: https://doi.org/10.1016/j.coesh.2018.04.007

Ortega, D. J. P., Ortega, J. A. S., Moncayo, P. C. C., Vargas, I. A. D., & Pompê, M. L. M. (2018). Uso del suelo y su influencia en la presión y degradación de los recursos hídricos en cuencas hidrográficas. RIAA, 9(1). Retrieved from http://hemeroteca.unad.edu.co/index.php/riaa/article/view/2089/2377

Picchio, R., Magagnotti, N., Sirna, A., & Spinelli, R. (2012). Improved winching technique to reduce logging damage. Ecological Engineering, 47, 83–86. doi: https://doi.org/10.1016/j.ecoleng.2012.06.037

Picchio, R., Neri, F., Maesano, M., Savelli, S., Sirna, A., Blasi, S., ...Marchi, E. (2011). Growth effects of thinning damage in a Corsican pine (Pinus laricio Poiret) stand in central Italy. Forest Ecology and Management, 262(2), 237–243. doi: https://doi.org/10.1016/j.foreco.2011.03.028

Picchio, R., Neri, F., Petrini, E., Verani, S., Marchi, E., & Certini, G. (2012). Machinery-induced soil compaction in thinning two pine stands in central Italy. Forest Ecology and Management, 285, 38–43. doi: https://doi.org/10.1016/j.foreco.2012.08.008

Rodríguez-Ortiz, G., Aldrete, A., González-Hernández, V. A., De los Santos-Posadas, H. M., Gómez-Guerrero, A., & Fierros-González, A. M. (2011a). ¿Afectan los aclareos la acumulación de biomasa aérea en una plantación de Pinus patula? Agrociencia, 45(6), 719–732. Retrieved from http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-31952011000600007

Rodríguez-Ortiz, G., González- Hernández, V. A., Aldrete, A., De Los Santos-Posadas, H. M., Gómez-Guerrero, A., & Fierros-González, A. M. (2011b). Modelos para estimar crecimiento y eficiencia de crecimiento en plantaciones de Pinus patula en respuesta al aclareo. Revista Fitotecnia Mexicana, 34(3), 205–212. Retrieved from http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0187-73802011000300012

Sahagún, S. F. J., & Reyes, H. H. (2018). Impactos por cambio de uso de suelo en las áreas naturales protegidas de la región central de la Sierra Madre Oriental, México. Ciencia UAT, 12(2), 6–21. Retrieved from http://www.scielo.org.mx/scielo.php?pid=S2007-78582018000100006&script=sci_abstract&tlng=en

Scholl, P., Leitner, D., Kammerer, G., Loiskandl, W., Kaul, H. P., & Bodner, G. (2014). Root induced changes of effective 1D hydraulic properties in a soil column. Plant and Soil, 381(1-2), 193–213. doi: https://doi.org/10.1007/s11104-014-2121-x

Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT). (2002). Norma oficial mexicana, NOM-021-RECNAT-2000, que establece las especificaciones de fertilidad, salinidad y clasificación de suelos. Estudios, muestreo y análisis. México: Diario Oficial de la Federación. Retrieved from http://biblioteca.semarnat.gob.mx/janium/Documentos/Ciga/libros2009/DO2280n.pdf

Sirén, M., Ala-Ilomäki, J., Mäkinen, H., Lamminen, S., & Mikkola, T. (2013). Harvesting damage caused by thinning of Norway spruce in unfrozen soil. International Journal of Forest Engineering, 24(1), 60–75. doi: https://doi.org/10.1080/19132220.2013.792155

Spinelli, R., Magagnotti, N., & Nati, C. (2010). Benchmarking the impact of traditional small-scale logging systems used in Mediterranean forestry. Forest Ecology and Management, 260(11), 1997–2001. doi: https://doi.org/10.1016/j.foreco.2010.08.048

Tavankar, F., Bonyad, A. E., & Majnounian, B. (2015). Affective factors on residual tree damage during selection cutting and cable-skidder logging in the Caspian forests, Northern Iran. Ecological Engineering, 83, 505–512. doi: https://doi.org/10.1016/j.ecoleng.2015.07.018

Torres-Rojo, J. M., Moreno-Sánchez, R., & Mendoza-Briseño, M. A. (2016). Manejo forestal sostenible en México. Current Forestry Reports, 2, 93–105. doi: https://doi.org/10.1007/s40725-016-0033-0

Turnbull, L., Wainwright, J., & Brazier, R. E. (2010). Changes in hydrology and erosion over a transition from grassland to shrubland. Hydrological Processes: An International Journal, 24(4), 393–414. doi: https://doi.org/10.1002/hyp.7491

Woerner, M. (1989). Métodos químicos para el análisis de suelos calizos de zonas áridas y semiáridas. México. Universidad Autónoma de Nuevo León

Yáñez-Díaz, M. I., Cantú-Silva, I., González-Rodríguez, H., & Sánchez-Castillo, L. (2019). Effects of land use change and seasonal variation in the hydrophysical properties in Vertisols in northeastern Mexico. Soil Use and Management, 35(3), 378–387. doi: https://doi.org/10.1111/sum.12500

Zhang, J., Lei, T., Qu, L., Chen, P., Gao, X., Chen, C., ...Su, G. (2017). Method to measure soil matrix infiltration in forest soil. Journal of Hydrology, 552, 241–248. doi: https://doi.org/10.1016/j.jhydrol.2017.06.032

Zúñiga, R. J., Martínez, E., Navarrete, C., Luna, J. D. J. S., Ayala, D. M., & Mejía, B. C. (2018). Análisis ecológico de un área de pago por servicios ambientales hidrológicos en el ejido La Ciudad, Pueblo Nuevo, Durango, México. Investigación y Ciencia, 73, 27–36. Retrieved from https://dialnet.unirioja.es/servlet/articulo?codigo=6311171

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2020 Revista Chapingo Serie Ciencias Forestales y del Ambiente