Revista Chapingo Serie Ciencias Forestales y del Ambiente
Analysis of basal area increment of Pinus hartwegii Lindl. at different altitudes and aspects on Jocotitlán Mountain, State of Mexico
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF

Keywords

Alpine forest
tree growth
dendrochronology
climate change
seasonal temperature

How to Cite

Núñez-García, A., Gómez-Guerrero, A., Terrazas-Salgado, T. M., Vargas-Hernández, J. J., & Villanueva-Díaz, J. (2020). Analysis of basal area increment of Pinus hartwegii Lindl. at different altitudes and aspects on Jocotitlán Mountain, State of Mexico. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 27(1), 73–88. https://doi.org/10.5154/r.rchscfa.2019.10.074

##article.highlights##

  • Four sites were assessed, combining aspect (northwest and southwest) and altitude (3 800 and 3 700 m).
  • The RWI series of the four observation sites had an intercorrelation of 0.33.
  • Tree growth of Pinus hartwegii was favored in the southwest aspect and at 3 700 m altitude.
  • The seasonal April-September precipitation explained the growth of Pinus hartwegii.
  • The previous year's autumn temperature correlated with the basal area increment the following year.

Abstract

Introduction: Basal area increment (BAI) is an indicator of forest productivity that varies with tree age and site factors such as soil and climate.
Objective: To generate tree-ring width index (RWI) and BAI chronologies of Pinus hartwegii Lindl., relate them to climatic variables, and study the variation in BAI at different altitudes and aspects.
Materials and methods: Four observation sites were identified, combining northwest (NW) and southwest (SW) aspects, as well as altitudes of 3 800 and 3 700 m. At each site, the temperature was recorded every four hours for 435 days and 32 growth ring segments were collected using a Pressler´s increment borer. Tree-ring width was measured and BAI was calculated; the correlation index between these indicators and the climatic variables was Pearson’s correlation coefficient.
Results and discussion: The RWI series from the four observation sites had an intercorrelation of 0.33 (P < 0.01). Two low-growth periods were detected, one between 1950 and 1960 and the other between 1990 and 2005. Site SO-3700 had a different growth pattern, due to a second growth phase beginning in 1978, possibly a benefit resulting from increased temperature. The previous autumn temperature, spring temperature and April-September precipitation of the current year explained the variation in BAI (P < 0.05).
Conclusion: The BAI of P. hartwegii could respond favorably to the predicted increases in temperature at an altitude of 3 700 m with southwest aspect.

https://doi.org/10.5154/r.rchscfa.2019.10.074
PDF

References

Astudillo-Sánchez, C. C., Villanueva-Díaz, J., Endara-Agramont, A. R., Nava-Bernal G. E., & Gómez-Albores, M. A. (2017). Climatic variability at the treeline of Monte Tlaloc, Mexico: a dendrochronological approach. Trees, 31(2), 441‒453. doi: https://doi.org/10.1007/s00468-016-1460-z

Balducci, L., Deslauriers, A., Giovannelli, A., Rossi, S., & Rathgeber, C. B. K. (2013). Effects of temperature and water deficit on cambial activity and woody ring features in Picea mariana saplings. Tree Physiology, 33(10), 1006‒1017. doi: https://doi.org/10.1093/treephys/tpt073

Begum, S., Kudo, K., Rahman, M. H., Nakaba, S., Yamagishi, Y., & Nabeshima, E. (2018). Climate change and the regulation of wood formation in trees by temperature. Trees, 38(1), 1‒13. doi: https://doi.org/10.1007/s00468-017-1587-6

Bernal-Salazar, S., & Terrazas-Salgado, T. (2000). Influencia climática sobre la variación radial de caracteres anatómicos de madera en Abies religiosa. Madera y Bosques, 6(1), 73‒86. doi: https://doi.org/10.21829/myb.2000.611343

Bunn, A. G. (2008). A dendrochronology program library in R (dplR). Dendrochronologia, 26(2), 115‒124. doi: https://doi.org/10.1016/j.dendro.2008.01.002

Castruita-Esparza, L. U., Correa-Díaz, A., Gómez-Guerrero, A., Villanueva-Díaz, J., Ramírez-Guzmán, M. E., Velázquez-Martínez, A., & Ángeles-Pérez, G. (2016). Basal area increment series of dominant trees of Pseudotsuga menziesii (Mirb.) Franco show periodicity according to global climate patterns. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 22(3), 379‒397. doi: https://doi.org/10.5154/r.rchscfa.2015.10.048

Cerano-Paredes, J., Villanueva, D. J., Cervantes, M. R., Vázquez, S. L., Trucios, C. R., & Guerra de la Cruz, V. (2014). Reconstrucción de precipitación invierno-primavera para el Parque Nacional Pico de Tancítaro, Michoacán. Investigaciones Geográficas, 83, 41‒54. doi: https://doi.org/10.14350/rig.35190

Cleaveland, M. K., Stahle, D. W., Therrell, M. D., Villanueva-Díaz, J., & Barney, T. B. (2003). Tree-ring reconstructed winter precipitation and tropical teleconnections in Durango, Mexico. Climatic Change, 59(3), 369‒388. doi: https://doi.org/10.1023/A:1024835630188

Cook, E. R. (1987). The decomposition of tree-ring series for environmental studies. Tree-Ring Bulletin, 47, 37‒59. Retrieved from https://repository.arizona.edu/handle/10150/261788

Cook, E. R., & Peters, K. (1981). The smoothing spline: a new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree-Ring Bulletin, 41, 45‒53. Retrieved from https://repository.arizona.edu/bitstream/handle/10150/261038/trb-41-045-053.pdf?sequence=1&isAllowed=y

Correa-Díaz, A., Gómez-Guerrero, A., Villanueva-Díaz, J., Castruita-Esparza, L. U., Martínez-Trinidad, T., & Cervantes-Martínez, R. (2014). Análisis dendroclimático de ahuehuete (Taxodium mucronatum Ten.) en el centro de México. Agrociencia, 48(5), 537‒551. Retrieved from http://www.scielo.org.mx/pdf/agro/v48n5/v48n5a7.pdf

Correa‐Díaz, A., Silva, L. C. R, Horwath, W. R., Gómez-Guerrero, A., Vargas-Hernández, J., Villanueva-Díaz, J., & Suárez-Espinoza, J. (2019). Linking remote sensing and dendrochronology to quantify climate‐induced shifts in high‐elevation forests over space and time. Journal of Geophysical Research: Biogeosciences, 124(1), 166‒183. doi: https://doi.org/10.1029/2018JG004687

Correa‐Díaz, A., Silva, L. C. R., Horwath, W. R., Gómez‐Guerrero, A., Vargas‐Hernández, J., Villanueva‐Díaz, J., ... Velázquez‐Martínez, A. (2020). From trees to ecosystems: Spatiotemporal scaling of climatic impacts on montane landscapes using dendrochronological, isotopic, and remotely sensed data. Global Biogeochemical Cycles, 34(3), e2019GB006325. doi: https://doi.org/10.1029/2019GB006325

Deslauriers, A., Rossi, S., Anfodillo, T., & Saracino, A. J. T. P. (2008). Cambial phenology, wood formation and temperature thresholds in two contrasting years at high altitude in southern Italy. Tree Physiology, 28(6), 863‒871. doi: https://doi.org/10.1093/treephys/28.6.863

Diaconu, D., Wassenberg, M., & Spiecker, H. (2016). Variability of European beech wood density as influenced by interactions between tree-ring growth and aspect. Forest Ecosystems, 3(1), 1‒9. doi: https://doi.org/10.1186/s40663-016-0065-8

Dixon, P. M. (2006). Bootstrap resampling. In A. H. El-Shaarawi, & W. Piegorsch (Eds.), Encyclopedia of environmetrics (pp. 1‒9). John Wiley & Sons, Ltd. doi: https://doi.org/10.1002/9780470057339

Dufour, B., & Morin, H. (2013). Climatic control of tracheid production of black spruce in dense mesic stands of eastern Canada. Tree Physiology, 33(2), 175‒186. doi: https://doi.org/10.1093/treephys/tps126

ERIC III (2014). Extractor Rápido de Información Climatológica, versión 3.2. México: Instituto Mexicano de Tecnología del Agua (IMTA).

Franco-Ramos, O., Vázquez-Selem, L., Stoffel, M., & Villanueva-Díaz, J. (2018). Potencial dendrogeomorfológico de coníferas en volcanes del centro de México. Bosque (Valdivia), 39(2), 191‒204. doi: https://doi.org/10.4067/S0717-92002018000200191

Gómez-Guerrero, A., & Doane, T. (2018). The response of forest ecosystems to climate change. In Developments in Soils Science, 35, 185‒206. doi: https://doi.org/10.1016/B978-0-444-63865-6.00007-7

Holmes, R. L. (1983). Computer‐assisted quality control in tree‐ring dating and measurement. Tree Ring Bullulletin, 43, 51‒67. Retrieved from https://repository.arizona.edu/handle/10150/261223

Instituto para el Federalismo y el Desarrollo Municipal (INAFED). (2020). Retrieved September 29, 2020 from http://www.inafed.gob.mx/work/enciclopedia/EMM15mexico/municipios/15048a.html

Körner, C. (2007). Climatic treelines: conventions, global patterns, causes (Klimatische Baumgrenzen: Konventionen, globale Muster, Ursachen). Erdkunde 61(4), 316‒324. Retrieved from https://www.jstor.org/stable/25648043?seq=1#page_scan_tab_contents

Lebourgeois, F. (2007). Climatic signal in annual growth variation of silver fir (Abies alba Mill.) and spruce (Picea abies Karst.) from the French Permanent Plot Network (RENECOFOR). Annals of Forest Science, 64(3), 333‒343. doi: https://doi.org/10.1051/forest:2007010

Marlés, M. J., Valor, I. T., López, C. B., Pérez, S. D. R., Maneja, Z. R., Sánchez, M. S., & Boada, J. M. (2015). Análisis dendroclimático de Pinus pseudostrobus y Pinus devoniana en los municipios de Áporo y Zitácuaro (Michoacán), Reserva de la Biósfera de la Mariposa Monarca. Investigaciones Geográficas, 88, 19‒32. doi: https://doi.org/10.14350/rig.43338

Musálem, M., & Solís, M. J. I. M. (2000). Monografía de Pinus hartwegii. México: INIFAP-CIRCE-Campo Experimental Valle de México. Retrieved from http://biblioteca.inifap.gob.mx:8080/xmlui/handle/123456789/1816

Poage, N. J., & Tappeiner, J. C. (2002). Long-term patterns of diameter and basal area growth of old-growth Douglas-fir trees in western Oregon. Canadian Journal of Forest Research, 32(7), 1232‒1243. doi: https://doi.org/10.1139/x02-045

Pompa-García, M., Cerano-Paredes, J., & Fulé, P. Z. (2013). Variation in radial growth of Pinus cooperi in response to climatic signals across an elevational gradient. Dendrochronologia, 31(3), 198‒204. doi: https://doi.org/10.1016/j.dendro.2013.05.003

R Development Core Team (2007). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

Schweingruber, F. H., Kairiukstis, L., & Shiyatov, S. (1990). Sample selection. In E. Cook, & L. Kairiukstis (Eds.), Methods of dendrochronology: Applications in the environmental sciences (pp. 23‒35). Netherlands: Springer-Science+Business Media. doi: https://doi.org/10.1007/978-94-015-7879-0

Villanueva, D. J., Cerano-Paredes, J., Fulé, P. Z., Cortés, M. C., Vázquez, S. L., Yocom, L. L., & Ruíz-Corral, J. A. (2015a). Cuatro siglos de variabilidad hidroclimática en el noroeste de Chihuahua, México, reconstruida con anillos de árboles. Investigaciones Geográficas, 87, 141‒153. doi: https://doi.org/10.14350/rig.44485

Villanueva, D. J., Cerano-Paredes, J., Selem-Vázquez, L., Stahle, D. W., Fulé, P. Z., Yocom, L. L., …Ruíz, C. J. A. (2015b). Red dendrocronológica del pino de altura (Pinus hartwegii Lindl.) para estudios dendroclimáticos en el noreste y centro de México. Investigaciones Geográficas, 86, 5‒14. doi: https://doi.org/10.14350/rig.42003

Villanueva, D. J., Cerano, J., Fulé, P. Z., Cortés, M. C., Vázquez, S. L., Yocom, L. L., & Ruíz-Corral, J. A. (2015c). Cuatro siglos de variabilidad hidroclimática en el noroeste de Chihuahua, México, reconstruida con anillos de árboles. Investigaciones Geográficas, 87, 141‒153. doi: https://doi.org/10.14350/rig.44485

Villanueva, D. J., Vázquez, S. L., Estrada, A. J., Martínez, S. A. R., Cerano, P. J., Canizales, V. P. A., Franco, R. O., & Reyes, C. F. (2018). Comportamiento hidroclimático de coníferas en el Cerro Potosí, Nuevo León, México. Revista Mexicana de Ciencias Forestales, 9(49), 165‒187. doi: https://doi.org/10.29298/rmcf.v9i49.128

Villanueva, J., Gómez, A., Cerano, J., Rosales, S., Estrada, J., Castruita, L. U., & Martínez, R. A. (2017). La variabilidad del caudal del río Acaponeta inferida mediante series de anillos de crecimiento en coníferas. Tecnología y Ciencias del Agua, 8(3), 55‒74. doi: https://doi.org/10.24850/j-tyca-2017-03-04

Villanueva-Díaz, J., Fulé, P. Z., Cerano-Paredes, J., Estrada, A. J., & Sánchez, C. I. (2009). Reconstrucción de la precipitación estacional para el barlovento de la Sierra Madre Occidental con anillos de crecimiento de Pseudotsuga menziesii (Mirb.) Franco. Ciencia Forestal en México, 34(105), 37‒69. Retrieved from http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-35862009000100003

Villanueva-Díaz, J., Stahle, D. W., Luckman, B. H., Cerano-Paredes, J., Therrell, M. D., Cleaveland, M. K., & Cornejo-Oviedo, E. (2007). Winter-spring precipitation reconstructions from tree rings for northeast Mexico. Climatic Change, 83(1-2), 117‒131. doi: https://doi.org/10.1007/s10584-006-9144-0

Viveros-Viveros, H., Sáenz-Romero, C., Vargas-Hernández, J. J., López-Upton, J., Ramírez-Valverde, G., & Santacruz-Varela, A. (2009). Altitudinal genetic variation in Pinus hartwegii Lindl. I: Height growth, shoot phenology, and frost damage in seedlings. Forest Ecology and Management, 257(3), 836‒842. doi: https://doi.org/10.1016/j.foreco.2008.10.021

Zang, C., & Biondi, F. (2015). treeclim: an R package for the numerical calibration of proxy‐climate relationships. Ecography, 38(4), 431‒436. doi: https://doi.org/10.1111/ecog.01335

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2020 Revista Chapingo Serie Ciencias Forestales y del Ambiente