Revista Chapingo Serie Ciencias Forestales y del Ambiente
Chihuahua southwestern hydroclimatic variability inferred with coniferous growth rings
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF

Keywords

Dendrochronological network
drought indices
atmospheric phenomena
climate reconstruction
precipitation

How to Cite

Villanueva-Díaz, J., Castruita-Esparza, L. U. ., Martínez-Sifuentes, A. R. ., Loera-Chaparro, R., & Estrada-Ávalos, J. (2020). Chihuahua southwestern hydroclimatic variability inferred with coniferous growth rings. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 26(3), 373–389. https://doi.org/10.5154/r.rchscfa.2019.09.071

##article.highlights##

  • The dendrochronological network of 1790-2015 allowed the reconstruction of precipitation September-July.
  • Study species: Pinus lumholtzii, P. arizonica, P. leiophylla, Pseudotsuga menziesii and Abies durangensis.
  • Sixteen dry and thirteen wet events were detected, indicating high interannual and multiannual variability.
  • Precipitation variability was associated with ENSO at frequencies greater than two years.
  • The total ring-width regional dendrochronological series is a "proxy" for historical droughts.

Abstract

Introduction: The forest management unit 0807 (UMAFOR 0807) is one of the most productive in timber and water resources provision, but there are no studies of historical hydroclimatic variability and its trends for predictive purposes.
Objective: to generate a precipitation reconstruction through a regional dendrochronological network for the southwest of the state of Chihuahua.
Materials and methods: a network of growth series of five distinctive conifers of UMAFOR 0807 was developed; through Principal Component Analysis the series with the greatest common variance were defined to obtain a representative chronology. The reconstruction model was generated with a series of regional precipitation. The general circulation modes with the greatest impact on rainfall variability and the association of the total ring-width index with the drought indices were analyzed.
Results and discussion: From eight chronologies generated, six showed a common climate response to integrate a regional representative series, which responded to September-July precipitation. The correlation between the total ring-width index and the Palmer Drought Severity Index (PDSI) was 0.68 (P < 0.01) in the June-August period, and 0.71 (P < 0.01) for the Standardized Precipitation Evapotranspiration Index (SPEI) for August of the previous year to June of the current year of growth. The reconstructed precipitation showed significance in spectral peaks of 2.1 and 2.8 years, corresponding to the influence of ENSO (El Niño–Southern Oscillation).
Conclusions: the dendrochronological network composed of various tree species and integrated in a regional chronology allowed to capture the interannual and multiannual variability of the climate.

https://doi.org/10.5154/r.rchscfa.2019.09.071
PDF

References

Allan, R., Lindsay, J., & Parker, D. (1996). El Niño Southern Oscillation and climate variability. Australia: CSIRO. Retrieved from https://trove.nla.gov.au/work/14018011?selectedversion=NBD12345457

Bickford, I. N., Fulé, P. Z., & Kolb, T. E. (2011). Growth sensitivity of drought of co-occurring Pinus spp. along an elevational gradient in northern Mexico. Western North American Naturalist, 71(3), 338‒348. doi: https://doi.org/10.3398/064.071.0302

Biondi, F., & Weikul, K. (2004). DENDROCLIM2002: AC++ program for statistical calibration of climate signals in tree-ring. Computer and Geosciences, 30(3), 303‒311. doi: https://doi.org/10.1016/j.cageo.2003.11.004

Bunn, A., Korpela, M., Biondi, F., Campelo, F., M’erian, P., Qeadan, F., Zang, C., …Wernick, J. (2018). dplR: Dendrochronology Program Library in R. R package (version 1.6.7). Retrieved from https://r-forge.r-project.org/projects/dplr/

Castruita-Esparza, L. U., Silva, C. R. L., Gómez-Guerrero, A., Villanueva-Díaz, J., Correa-Díaz, A., & Horwath, W. (2019). Coping with extreme events: growth and water-use efficiency of trees in western Mexico during the driest and wettest periods of the past one hundred sixty years. Journal of Geophysical Research: Biogeosciences, 124(11), 1‒13. doi: https://doi.org/10.1029/2019JG005294

Cleaveland, M. K., Stahle, D. W., Therrell, M. D., Villanueva-Diaz, J., & Burns, B. T. (2003). Tree-ring reconstructed precipitation and tropical teleconnections in Durango, Mexico. Climatic Change, 59, 369‒388. doi: https://doi.org/10.1023/A:1024835630188

Comisión Nacional del Agua (CONAGUA). (2018). Estadísticas del agua en México. México: SEMARNAT. Retrieved from http://sina.conagua.gob.mx/publicaciones/EAM_2018.pdf

Comisión Nacional del Agua (CONAGUA). (2019). Banco nacional de aguas superficiales. Retrieved from http://www.conagua.gob.mx/CONAGUA07/Contenido/Documentos/Portada%20BANDAS.htm

Comisión Nacional Forestal (CONAFOR). (2009). Estudio regional forestal: Región de manejo silvícola de Guachochi, A. C. Sistema biométrico. UMAFOR 0807, Guachochi, Chihuahua. Retrieved from cnf.gob.mx:8443/snif/seif_chihuahua/programas/programasestrategicos/manejo-forestal-sustentable/sistemas-biometricos

Cook, E. R. (1987). The decomposition of tree-ring series for environmental studies. Tree-Ring Bulletin, 47, 37‒59. Retrieved from https://repository.arizona.edu/bitstream/handle/10150/261788/trb-47-037-059.pdf?sequence=1

Descroix, J., Nouevelot, J. F., & Vauclin, M. (2002). Evaluation of antecedent precipitation index to model runoff yield in the western Sierra Madre (North-west Mexico). Journal of Hydrology, 263(1-4), 114‒130. doi: https://doi.org/10.1016/S0022-1694(02)00047-1

Díaz, C. S., Therrell, M. D., Stahle, D. W., & Cleaveland, M. K. (2002). Chihuahua winter-spring precipitation reconstructed from tree-rings, 1647-1992. Climate Research, 22(3), 237‒244. doi: https://doi.org/10.3354/cr022237

Drobyshev, I., Gewehr, S., Berninger, F., & Bergeron, Y. (2013). Species specific growth responses of black spruce and trembling aspen may enhance resilience of boreal forest to climate change. Journal of Ecology, 101(1), 231‒242. doi: https://doi.org/10.1111/1365-2745.12007

Duchesne, L., D'Orangeville, L., Ouimet, R., Houle, D., & Kneeshaw, D. (2017). Extracting coherent tree-ring climatic signals across spatial scales from extensive forest inventory data. PLoS ONE, 12(12), e0189444. doi: https://doi.org/10.1371/journal.pone.0189444

Easterling, D. R., Evans, J. L., Groisman, P. Y., Karl, T. R., Kunkel, K. E., & Ambenje, P. (2001). Observed variability and trends in extreme climate events: A brief review. Bulletin American Meteorology Society, 81(3), 417–425. doi: https://doi.org/10.1175/1520-0477(2000)081<0417:OVATIE>2.3.CO;2

Endfield, D. B., Mestas-Nuñez, A. M., & Trimble, P. J. (2001). The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental U.S. Geophysical Research Letters, 28(10), 2077‒2080. doi: https://doi.org/10.1029/2000GL012745

Endfield, G., & Tejedo, I. F. (2006). Decades of drought, years of hunger: archival investigations of multiple year droughts in late colonial Chihuahua. Climatic Change, 75, 391‒419. doi: https://doi.org/10.1007/s10584-006-3492-7

Instituto Mexicano de Tecnología del Agua (IMTA). (2013). ERIC III versión 3.2. Extractor rápido de información climatológica. CONAGUA. Retrieved from http://hidrosuperf.imta.mx/sig_eric/

Esper, J., Cook, E.R., Krusk, P., Peters, K., & Schweingruber, F. (2003). Tests of the RCS method for preserving low-frequency variability in long tree-ring chronologies. Tree-Ring Research, 59(2), 81‒98. Retrieved from https://repository.arizona.edu/handle/10150/262573

Feng, S., & Fu, Q. (2013). Expansion of global drylands under a warming climate. Atmospheric, Chemistry and Physics, 13, 10081e10094. doi: https://doi.org/10.5194/acp-13-10081-2013

Fritts, H. C. (1976). Tree-rings and climate. New York, USA: Academic Press. doi: https://doi.org/10.1016/B978-0-12-268450-0.X5001-0

García, E. (2004). Modificaciones al sistema de clasificación climática de Köppen (5.a ed.). México: Instituto de Geografía de la UNAM. Retrieved from http://www.igeograf.unam.mx/sigg/utilidades/docs/pdfs/publicaciones/geo_siglo21/serie_lib/modific_al_sis.pdf

Holmes, R. L. (1983). Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bulletin, 43, 69‒78. Retrieved from https://repository.arizona.edu/handle/10150/261223

Holmes, R. L. (2001). Dendrochronology program library. Retrieved June 10, 2019 from https://www.ltrr.arizona.edu/software.html

Irby, C. M., Fulé, P. Z., Yocom, L. L., & Villanueva, D. J. (2013). Dendrochronological reconstruction of long-term precipitation patterns in Basaseachi National Park, Chihuahua, Mexico. Madera y Bosques, 19(1), 93‒105. doi: https://doi.org/10.21829/myb.2013.191349

Jia, X., & Ge, J. (2017). Modulation of the PDO to the relationship between moderate ENSO events and the winter climate over North America. International Journal of Climatology, 37(12), 4275‒4287. doi: https://doi.org/10.1002/joc.5083

Kumar, A., & Hu, Z. (2014). How variable is the uncertainty in ENSO sea surface temperature prediction? Journal of Climate, 27, 2779–2788. doi: 10.1175/JCLI-D-13-00576.1

Li, J., Shang-Ping, X., Cook, E. R., Huangs, G., D’Arrigo, R., Jian, L., & Zheng, X. (2011). Interdecadal modulation of El Niño amplitude during the past millennium. Nature Climate Change, 1, 114–118. doi: https://doi.org/10.1038/nclimate1086

Mantua, N. J. (2017). The Pacific Decadal Oscillation (PDO). Retrieved June 10, 2019 from http://jisao.washington.edu/pdo/

Meko, D. M., Touchan, R., Villanueva, J., Griffin, D., Woodhouse, C. A., Castro, C. L., & Leavitt, S. W. (2013). Sierra San Pedro Martir, Baja California cool-season precipitation reconstructed from earlywood width of Abies concolor tree rings. Journal of Geophysical Research: Biogeosciences, 118(4), 1660‒1673. doi: https://doi.org/10.1002/2013JG002408

Méndez, M., & Magaña, V. (2010). Regional aspects of prolonged meteorological droughts over Mexico and Central America. American Meteorological Society, 23, 1175‒1188. doi: https://doi.org/10.1175/2009JCLI3080.1

Pavia, E. G., Graef, F., & Reyes, F. (2006). PDO-ENSO effects in the climate of Mexico. American Meteorological Society, 19, 6433‒6438. doi: https://doi.org/10.1175/JCLI4045.1

St. George, S. (2014). The global network of tree-ring widths and its applications to paleoclimatology. Past Global Changes Magazine, 22(1), 16‒17. doi: https://doi.org/10.22498/pages.22.1.16

Stahle, D. W., D’árrigo, R. D., Krusic, P. J., Cleaveland, M. K., Cook, E. R., Allan, R. J., Cole, J. E., …Thompson, L. G. (1998). Experimental dendroclimatic reconstruction of the Southern Oscillation. Bulletin of the American Meteorological Society, 70(10), 2137‒2152. doi: https://doi.org/10.1175/1520-0477(1998)079<2137:EDROTS>2.0.CO;2

Stahle, D. W., Villanueva-Diaz, J., Burnette, D. J., Cerano-Paredes, J., Heim Jr., R. R., Fye, F. K., Acuña-Soto, R., …Stahle, D. K. (2011). Major Mesoamerican droughts of the past millennium. Geophysical Research Letters, 38, L05703. doi: https://doi.org/10.1029/2010GL046472

Stahle, D. W., Cook, E. R., Burnette, D. J., Villanueva, J., Cerano, J., Burns, J. N., Griffin, D., …Howard, J. M. (2016). The Mexican drought atlas: tree-ring reconstructions of the soil moisture balance during the late pre-Hispanic, colonial, and modern eras. Quaternary Science Review, 149, 34‒60. doi: https://doi.org/10.1016/j.quascirev.2016.06.018

Stokes, M. A., & Smiley, T. L. (1968). An introduction to tree-ring dating. USA: The University of Chicago.

Terán, A. (2010). Análisis de escenarios de lluvia en México. Tesis doctoral, Centro Interdisciplinario de Investigaciones y Estudios sobre Medio Ambiente y Desarrollo (CIIEMAD) del Instituto Politécnico Nacional (IPN), México. Retrieved from https://tesis.ipn.mx/jspui/handle/123456789/23294

Torbenson, C. A., Stahle, D. W., Howard, J. M., Burnette, D. J., Villanueva-Diaz, J., Cook, E. R., & Griffin, D. (2019). Multidecadal modulation of the ENSO teleconnection to precipitation and tree growth over subtropical North America. Paleoceanography and Paleoclimatology, 34(5), 886–900. doi: https://doi.org/10.1029/2018PA003510

van Oldenborgh, G. J., te Raa, L. A., Dijkstra, H. A., & Philip, S. Y. (2009). Frequency- or amplitude-dependent effects of the Atlantic meridional overturning on the tropical Pacific Ocean. Ocean Science, 5(3), 293–301. doi: https://doi.org/10.5194/os-5-293-2009

Vicente-Serrano, S. M., Beguería, S., & López-Moreno, J. I. (2010). A multiscale drought index sensitive to global warming: the standardized precipitation evapotranspiration index-SPEI. Journal of Climate, 23(7), 1696–1718. doi: https://doi.org/10.1175/2009jcli2909.1

Villanueva, J., Cerano, J., Fulé, P. Z., Cortés, C., Vázquez, L., Yocom, L., & Ruiz-Corral, J. A. (2015a). Cuatro siglos de variabilidad hidroclimática en el noroeste de Chihuahua, México, reconstruida con anillos de árboles. Investigaciones Geográficas, 87, 141‒153. doi: https://doi.org/10.14350/rig.44485

Villanueva, J., Cerano, J., Vázquez, L., Stahle, D. W., Fulé, P. Z., Yocom, L. L., Franco, O., & Ruiz, J. A. (2015b). Red dendrocronológica de pino de altura (Pinus hartwegii Lindl.) para estudios dendroclimáticos en el noreste y centro de México. Investigaciones Geográficas, 86, 5‒14. doi: https://doi.org/10.14350/rig.42003

Villanueva, J., Gómez, A., Cerano, J., Rosales, S., Estrada, J., Castruita, L. U., & Martínez, A. R. (2017). La variabilidad del caudal del río Acaponeta inferida mediante series de anillos de crecimiento en coníferas. Tecnología y Ciencias del Agua, 8(3), 55‒74. doi: https://doi.org/10.24850/j-tyca-2017-03-04

Wigley, K. J., Brifa, K. R., & Jones, P. D. (1984). On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. American Meteorological Society, 23, 201‒213. doi: https://doi.org/10.1175/1520-0450(1984)023<0201:OTAVOC>2.0.CO;2

Wolter, K., & Timlin, M. S. (2011). El Niño/Southern Oscillation behavior since 1871 as diagnosed in an extended multivariate ENSO index (MEI.ext). International Journal of Climatology, 31(7), 1074‒1087. doi: https://doi.org/10.1002/joc.2336

Woodhouse, C., & Lukas, J. (2006). Drought, tree rings and water resource management in Colorado. Canadian Water Resources Journal, 31(4), 297‒310. doi: https://doi.org/10.4296/cwrj3104297

Woodhouse, C. A., Stahle, D. W., & Villanueva, J. (2012). Rio Grande and Rio Conchos water supply variability over past 500 years. Climate Research, 51(2), 125‒136. doi: https://doi.org/10.3354/cr01059

Wright, P. B. (1979). Persistence of rainfall anomalies in the central pacific. Nature, 277, 371‒374. doi: https://doi.org/10.1038/277371a0

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2020 Revista Chapingo Serie Ciencias Forestales y del Ambiente