Revista Chapingo Serie Ciencias Forestales y del Ambiente
Root growth of Taxodium mucronatum Ten. planted in an urban area
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF

Keywords

Ahuehuete
rhizotron
root system
irrigation
soil compaction

How to Cite

Hernández-López, P., Mohedano-Caballero, L., Rodríguez-Trejo, D. A., & Martínez-Trinidad, T. (2020). Root growth of Taxodium mucronatum Ten. planted in an urban area. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 27(1), 03–17. https://doi.org/10.5154/r.rchscfa.2019.08.064

##article.highlights##

  • The number and length of roots of young trees of ahuehuete (Taxodium mucronatum) was evaluated.
  • The effect of irrigation frequency and soil loosening was evaluated on root growth.
  • The surrounding loosening of the soil did not significantly improve root growth.
  • The root length was similar for the irrigation and soil factors and their interaction (267.75 to 453.28 cm).
  • Frequent irrigation (once a week) and soil without loosening generated a higher number of roots (190.5).

Abstract

Introduction: The ahuehuete (Taxodium mucronatum Ten.), National Tree of Mexico, is frequently found in urban green areas, in conditions of restricted humidity and compacted soils. These characteristics negatively affect growth and survival. 
Objective: To evaluate root growth of young ahuehuete trees by the effect of the frequency of irrigation and loosening of the soil surrounding the planting strain. 
Materials and methods: 24 trees 2 m high were planted in an urban area. The experiment was established as a completely random design with factorial arrangement: a) irrigation frequency (frequent [once weekly] and spaced [once every two weeks]) and b) treatment of the soil surrounding the plantation strain (soil with and without loosening). The growth of the root system was monitored for 12 months through digital photographs, obtained from rhizotrons installed on a side wall of each plantation strain. 
Results and discussion: The original compaction of the site did not present restrictive levels for growth; therefore, the surrounding loosening did not significantly improve (P > 0.1) short-term root growth. Root length (267.75 to 453.28 cm) showed no statistically significant differences for the irrigation and soil factors and their interaction; however, the number of roots was affected by the interaction of the factors (P ≤ 0.1). Trees with frequent irrigation and soil without loosening developed a higher number of roots (190.5). 
Conclusion: The interaction of irrigation frequency and soil condition influences the number of roots, but not the length.

https://doi.org/10.5154/r.rchscfa.2019.08.064
PDF

References

Abrisqueta, J. M., Mounzer, O., Álvarez, S., Conejero, W., García-Orellana, Y., Tapia, L. M., & Ruiz-Sánchez, M. C. (2008). Root dynamics of peach trees submitted to partial rootzone drying and continuous deficit irrigation. Agricultural Water Management, 95(8), 959–967. doi: https://doi.org/10.1016/j.agwat.2008.03.003

Allen, G. R., Pereira, L. S., Raes, D., & Smith, M. (2006). Evapotranspiración del cultivo: Guías para la determinación de los requerimientos de agua de los cultivos. Roma, Italia: Organización de las Naciones Unidas para la Agricultura y la Alimentación. Retrieved from http://www.fao.org/3/x0490s/x0490s00.htm

Bartzen, B., Hoelscher, G., Ribeiro, L., & Seidel, E. (2019). How the soil resistance to penetration affects the development of agricultural crops? Journal of Experimental Agriculture International, 30(5), 1–17. doi: https://doi.org/10.9734/JEAI/2019/46589

Bassuk, N., Raffel, G., & Sax, M. S. (2019). Root growth of Accolade™ elm in structural soil under porous and nonporous asphalt after twelve years. Arboriculture & Urban Forestry, 45(6), 297–302. Retrieved from https://www.researchgate.net/publication/336678932_Root_Growth_of_Accolade_Elm_in_Structural_Soil_Under_Porous_and_Nonporous_Asphalt_After_Twelve_Years

Benítez, B. G., Pulido, S. M. T., & Equihua, Z. M. (2004). Árboles multiusos nativos de Veracruz para reforestación, restauración y plantaciones. Veracruz, México: Instituto de Ecología, A. C.

Blair, S. A., Koeser, A. K., Knox, G. W., Roman, L. A., Thetford, M., & Hilbert, D. R. (2019). Health and establishment of highway plantings in Florida (United States). Urban Forestry & Urban Greening, 43, 1–13. doi: https://doi.org/10.1016/j.ufug.2019.126384

Blouin, V. M., Schmidt, M. G., Bulmer, C. E., & Krzic, M. (2008). Effects of compaction and water content on lodgepole pine seedling growth. Forest Ecology and Management, 255(7), 2444–2452. doi: https://doi.org/10.1016/j.foreco.2008.01.008

Bulmer, C. E., & Simpson, D. G. (2005). Soil compaction and water content as factors affecting the growth of lodgepole pine seedlings on sandy clay loam soil. Canadian Journal of Soil Science, 85(5), 667–679. doi: https://doi.org/10.4141/S04-055

Busch, J., Mendelssohn, I. A., Lorenzen, B., Brix, H., & Miao, S. (2006). A rhizotron to study root growth under flooded conditions tested with two wetland Cyperaceae. Flora, 201, 429–439. doi: https://doi.org/10.1016/j.flora.2005.08.007

Cochavi, A., Rachmilevitch, S., & Bel, G. (2019). The effect of irrigation regimes on plum (Prunus cerasifera) root system development dynamics. Plant Biosystems, 153(4), 529–537. doi: https://doi.org/10.1080/11263504.2018.1508087

Comisión Nacional Forestal (CONAFOR). (2010). Ahuehuete, Taxodium mucronatum. Retrieved from http://www.conafor.gob.mx/biblioteca/Poster-Ahuehuete-Historico.pdf

Comisión Nacional Forestal (CONAFOR) & Comisión Nacional el Conocimiento y Uso de la Biodiversidad (CONABIO). (2011). Taxodium mucronatum Ten. Retrieved from http://www.conafor.gob.mx:8080/documentos/docs/13/1011Taxodium%20mucronatum.pdf

Craul, P. J. (1992). Urban soil in landscape design. New York, USA: John Wiley & Sons.

Day, S. D., Wiseman, P. E., Dickinson, S. B., & Harris, J. R. (2010a). Contemporary concepts of root system architecture of urban trees. Arboriculture and Urban Forestry, 36(4), 149–159. Retrieved from http://joa.isa-arbor.com/articles.asp?JournalID=1&VolumeID=36&IssueID=4

Day, S. D., Wiseman, P. E., Dickinson, S. B., & Harris, J. R. (2010b). Tree root ecology in the urban environment and implications for a sustainable rhizosphere. Arboriculture & Urban Forestry, 36(5), 193–205. Retrieved from https://www.urbanforestry.frec.vt.edu/documents/articles/2010Arboriculture.pdf

Day, S. D., Bassuk, N. L., & Van Es, H. (1995). Effects of four compaction remediation methods for landscape trees on soil aeration, mechanical impedance and tree establishment. Journal of Environmental Horticulture, 13(2), 64–71. Retrieved from https://www.researchgate.net/publication/285403998_Effects_of_Four_Compaction_Remediation_Methods_for_Landscape_Trees_on_Soil_AerationMechanical_Impedance_and_Tree_Establishment

DICKEY-jhon (2017). Soil compaction tester: Installation instructions. Retrieved from dickey-john.com/product/soil-compaction-tester/

Food and Agriculture Organization (FAO). (2009). ETo Calculator version 3.1. Land and water digital media series no. 36. Rome, Italy. Retrieved from http://www.fao.org/land-water/databases-and-software/eto-calculator/es/

Fisher, R. F., & Binkley, D. (2000). Ecology and management of forest soils (3rd ed.). New York, USA: John Wiley & Sons.

Fitter, A. (2002). Characteristics and functions of root systems. In Y. Waisel, A. Eshel, T. Beeckman & U. Kafkafi (Eds.), Plant roots the hidden half (3rd ed., pp. 21). Boca Raton, Florida, USA: CRC Press. doi: https://doi.org/10.1201/9780203909423

Gao, W., Schlüter, S., Blaser, S. R. G. A., Shen, J., & Vetterlein, D. (2019). A shape-based method for automatic and rapid segmentation of roots in soil from X-ray computed tomography images: Rootine. Plant Soil, 441, 643–655. doi: https://doi.org/10.1007/s11104-019-04053-6

Gilman, E. F. (1990). Tree root growth and development II. Response to culture, management and planting. Journal of Environmental Horticulture, 8(4), 220–227. doi: https://doi.org/10.24266/0738-2898-8.4.220

Gilman, E. F. (2004). Effects of amendments, soil additives, and irrigation on tree survival and growth. Journal of Arboriculture, 30(5), 301–304. Retrieved from http://joa.isa-arbor.com/articles.asp?JournalID=1&VolumeID=30&IssueID=5

Gilman, E. F., Grabosky, J., Stodola, A., & Marshall, M. D. (2003). Irrigation and container type impact red maple (Acer rubrum L.) 5 years after landscape planting. Journal of Arboriculture, 29(4), 231–235. Retrieved from http://joa.isa-arbor.com/articles.asp?JournalID=1&VolumeID=29&IssueID=4

Gilman, E. F., Wiese, C. L., Paz, M., Shober, A. L., Scheiber, S. M., Moore, K. A., & Brennan, M. (2009). Effects of irrigation volume and frequency on shrub establishment in Florida. Journal of Environmental Horticulture, 27(3), 149–154. doi: https://doi.org/10.24266/0738-2898-27.3.149

Gregory, P. J., & Kirkegaard, J. A. (2017). Growth and function of root systems. In D. J. Murphy, B. Thomas, & B. Murray (Eds.), Encyclopedia of applied plant sciences (2nd ed., pp. 230–237). Oxford: Elsevier. doi: https://doi.org/10.1016/B978-0-12-394807-6.00127-1

Guedea-Fernández, G., Arriaga-Frías, A., & De la Cruz-Guzmán, G. (2001). El efecto de maceta y el rizotrón: una herramienta para la investigación y docencia. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 7(2), 115–121. Retrieved from https://chapingo.mx/revistas/forestales/contenido.php?id_articulo=352&doi=1111&id_revista=3

Guevara, A., Pancotto, V., Mastrantonio, L., & Giordano, C. V. (2018). Fine roots of Prosopis flexuosa trees in the field. Plant and soil variables that control their growth and depth distribution. Plant Ecology, 219, 1399–1412. doi: https://doi.org/10.1007/s11258-018-0889-0

Harris, R. W., Clark, J. R., & Matheny, N. P. (2004). Arboriculture: Integrated management of landscape trees, shrubs, and vines (4a ed.). USA: Prentice Hall.

Hirons, A. D., & Thomas, P. A. (2018). Applied tree biology. Oxford, UK: John Wiley & Sons.

Kozlowski, T. T. (1987). Soil moisture and absorption of water by tree roots. Journal of Arboriculture, 13(2), 39–46. Retrieved from http://joa.isa-arbor.com/request.asp?JournalID=1&ArticleID=2133&Type=2

Kozlowski, T. T., Kramer, P. J., & Pallardy, S. G. (1991). The physiological ecology of woody plants. USA: Academic Press.

Lantini, L., Alani, A. M., Giannakis, I., Benedetto, A., & Tosti, F. (2019). Application of ground penetrating radar for mapping tree root system architecture and mass density of street trees. Advances in Transportation Studies, 3, 51–62. Retrieved from http://www.atsinternationaljournal.com/index.php/2019-issues/special-issue-2019-vol3

Lell, J. (2006). Arbolado urbano. Implantación y cuidados de árboles para veredas. Buenos Aires, Argentina: Orientación Gráfica Editora.

Lesur, L. (2011). Árboles de México. México: Trillas.

Lobet, G., & Draye, X. (2013). Novel scanning procedure enabling the vectorization of entire rhizotron-grown root systems. Plant Methods, 9(1), 2–10. doi: https://doi.org/10.1186/1746-4811-9-1

Ludovici, K. H. (2004). Tree roots and their interaction with soil. In J. Burley, J. Evans, & J. A. Youngquist (Eds.), Encyclopedia of forest sciences (pp. 1195–1201). Oxford: Elsevier. doi: https://doi.org/10.1016/B0-12-145160-7/00246-5

Martínez, C. F., Cavagnaro, J. B., Roig, F. A., & Cantón, M. A. (2013). Respuesta al déficit hídrico en el crecimiento de forestales del bosque urbano de Mendoza: Análisis comparativo en árboles jóvenes. Revista de la Facultad de Ciencias Agrarias Universidad Nacional de Cuyo, 45(2), 47–64. Retrieved from http://bdigital.uncu.edu.ar/objetos_digitales/6032/t45-2-04-martinez.pdf

Martínez, G. L., & Chacalo, H. A. (1994). Los árboles de la Ciudad de México. México: Universidad Autónoma Metropolitana–Unidad Azcapotzalco.

Mohamed, A., Monnier, Y., Mao, Z., Lobet, G., Maeght, J., Ramel, M., & Stokes, A. (2017). An evaluation of inexpensive methods for root image acquisition when using rhizotrons. Plant Methods, 13, 1–13. doi: https://doi.org/10.1186/s13007-017-0160-z

Nadezhdina, N., & Cermák, J. (2003). Instrumental methods for studies of structure and function of root systems of large trees. Journal of Experimental Botany, 54(387), 1511–1521. doi: https://doi.org/10.1093/jxb/erg154

Neumann, G., George, T. S., & Plassard, C. (2009). Strategies and methods for studying the rhizosphere-the plant science toolbox. Plant and Soil, 321, 431–456. doi: https://doi.org/10.1007/s11104-009-9953-9

Olesinski, J., Lavigne M. B., & Krasowski M. J. (2011). Effects of soil moisture manipulations on fine root dynamics in a mature balsam fir (Abies balsamea L. Mill.) forest. Tree Physiology, 31(3), 339–348. doi: https://doi.org/10.1093/treephys/tpr006

Rasband, W. S. (2016). ImageJ 1.50i. Maryland, USA: National Institute of Mental Health. Retrieved from https://imagej.nih.gov/ij/download.html

Richardson-Calfee, L. E., Harris, J. R., Jones, R. H., & Fanelli, J. K. (2010). Patterns of root production and mortality during transplant establishment of landscape-size sugar maple. Journal of the American Society for Horticultural Science, 135(3), 203–211. doi: https://doi.org/10.21273/JASHS.135.3.203

Roman, L. A., Walker, L. A., Martineau, C. M., Muffly, D. J., MacQueen, S. A., & Harris, W. (2015). Stewardship matters: Case studies in establishment success of urban trees. Urban Forestry & Urban Greening, 14(4), 1174–1182. doi: https://doi.org/10.1016/j.ufug.2015.11.001

Ryser, P. (2006). The mysterious root length. Plant and Soil, 286(1), 1–6. doi: https://doi.org/10.1007/s11104-006-9096-1

Silva, D. D., & Beeson, R. C. (2011). A large-volume rhizotron for evaluating root growth under natural-like soil moisture conditions. HortScience, 46(12), 1677–1682. doi: https://doi.org/10.21273/HORTSCI.46.12.1677

Smiley, E. T., Calfee, L., Fraedrich, B. R., & Smiley, E. J. (2006). Comparison of structural and noncompacted soils for trees surrounded by pavement. Arboriculture and Urban Forestry, 32(4), 164–169. Retrieved from http://joa.isa-arbor.com/request.asp?JournalID=1&ArticleID=2952&Type=2

Smit, A. L., George, E., & Groenworld, J. (2000). Root observations and measurements at (transparent) interfaces with soil. In A. L. Smit, A. G. Bengough, C. Engels, M. van Noordwijk, S. Pellerin, & S. C. van de Geijn (Eds.), Root methods: a handbook. Berlin, Germany: Springer-Verlag. doi: https://doi.org/10.1007/978-3-662-04188-8_8

Somerville, P. D., May, P. B., & Livesley, S. J. (2018). Effects of deep tillage and municipal green waste compost amendments on soil properties and tree growth in compacted urban soils. Journal of Environmental Management, 227, 365–374. doi: https://doi.org/10.1016/j.jenvman.2018.09.004

Statistical Analysis Software Inc. (SAS). (2015). SAS® 9.4. In database products: User’s guide (6th ed.). Cary, NC, USA: Author. Retrieved from https://support.sas.com/en/documentation.html

Stokes, A., Fourcaud, T., Hruska, J., Cermak, J., Nadyezdhina, N., Nadyezhdin, V., & Praus, L. (2002). An evaluation of different methods to investigate root system architecture of urban trees in situ: I. Ground-penetrating radar. Journal of Arboriculture, 28(1), 2–10. Retrieved from https://www.researchgate.net/publication/279710679_An_evaluation_of_different_methods_to_investigate_root_system_architecture_of_urban_trees_in_situ_I_ground-penetrating_radar

Topa, M. A. (2004). Root system physiology. In J. Burley (Ed.), Encyclopedia of forest sciences (pp. 1606–1615). Oxford, UK: Academic Press. doi: https://doi.org/10.1016/B0-12-145160-7/00102-2

Villanueva-Díaz, J., Stahle, D. W., Therrell, M. D., Beramendi-Orozco, L., Estrada-Ávalos, J., Martínez-Sifuentes, A. R., Astudillo-Sánchez, C. C., …Cerano-Paredes, J. (2020). The climatic response of baldcypress (Taxodium mucronatum Ten.) in San Luis Potosi, Mexico. Trees, 34, 623–635. doi: https://doi.org/10.1007/s00468-019-01944-0

Watson, G. W., Hewitt, A. M., Custic, M., & Lo, M. (2014a). The management of tree root systems in urban and suburban settings II: A review of strategies to mitigate human impacts. Arboriculture & Urban Forestry, 40(5), 249–271. Retrieved from http://joa.isa-arbor.com/request.asp?JournalID=1&ArticleID=3331&Type=2

Watson, G. W., Hewitt, A. M., Custic, M., & Lo, M. (2014b). The management of tree root systems in urban and suburban settings: a review of soil influence on root growth. Arboriculture & Urban Forestry, 40(4), 193–217. Retrieved from http://joa.isa-arbor.com/request.asp?JournalID=1&ArticleID=3326&Type=2

Zanetti, C., Vennetier, M., Mériaux, P., & Provansal, M. (2014). Plasticity of tree root system structure in contrasting soil materials and environmental conditions. Plant and Soil, 387, 21–35. doi: https://doi.org/10.1007/s11104-014-2253-z

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2020 Revista Chapingo Serie Ciencias Forestales y del Ambiente