Revista Chapingo Serie Ciencias Forestales y del Ambiente
Carbon footprint estimate in the primary wood processing industry in El Salto, Durango
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF

Keywords

sawmill
greenhouse gases
mobile combustion
electrical energy
mechanical technology

How to Cite

Meza-López, P., Trujillo-Delgado, M. K., de la Cruz-Carrera, R., & Nájera-Luna, J. A. (2020). Carbon footprint estimate in the primary wood processing industry in El Salto, Durango. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 27(1), 127–142. https://doi.org/10.5154/r.rchscfa.2019.07.060

##article.highlights##

  • The estimated carbon footprint was 710.62 tCO 2 e·year -1 at three sawmills in El Salto, Durango
  • Mechanical technology made the difference in greenhouse gas emissions among sawmills.
  • Diesel consumption in 11 logging trucks emitted 451.03 tCO 2 e·year -1
  • Electric motors (sawing, sanitation and sizing) indirectly released 68.77 tCO 2 e·year -1 .

Abstract

Introduction: The primary wood processing industry releases greenhouse gases (GHGs); their mitigation involves measuring the carbon footprint.
Objective: To estimate the carbon footprint of two forestry companies dedicated to the primary transformation of wood.
Materials and methods: Companies established as organizational boundaries L1 and L2 have two (Q1 and Q2) and one (D) sawmill, respectively. The operational limits were A1 (direct emissions from fossil fuel consumption), A2 (indirect emissions from electricity consumption) and A3 (emission sources not owned by L1 and L2). GHG emissions were calculated in two annuities with the method of using documented activity data and emission factors level 1. The annuities were compared with the Student’ t-test and Wilcoxon test, and the sawmills with the Kruskal-Wallis test.
Results and discussion: The estimated carbon footprint for L1 was 480.06 tCO 2 e·year - 1 , where A1, A2 and A3 represented 29.32 %, 14.59 % and 56.09 %, respectively. L2 had a footprint of 230.56 tCO 2 e·year -1 of which 9.39 %, 11.78 % and 78.83 % corresponded to the categories A1, A2 and A3, respectively. The cumulative uncertainty was within a fair range of accuracy (±25 %). Only the direct GHG emissions between L1 annuities were statistically different (P < 0.05). Mechanical technology made the difference in GHG emissions among sawmills (P < 0.05).
Conclusions: The carbon footprint is inherent to the energy used; energy management ensures the mitigation of GHG emissions.

https://doi.org/10.5154/r.rchscfa.2019.07.060
PDF

References

Adhikari, S., & Ozarska, B. (2018). Minimizing environmental impacts of timber products through the production process “from sawmill to final products”. Environmental Systems Research, 7(1), 6. doi: https://doi.org/10.1186/s40068-018-0109-x

Berg, S., & Karjalainen, T. (2003). Comparison of greenhouse gas emissions from forest operations in Finland and Sweden. Forestry, 76(3), 271‒284. doi: https://doi.org/10.1093/forestry/76.3.271

Comisión Reguladora de Energía (CRE). (2017). Factor de emisión del sector eléctrico nacional. Retrieved from https://www.gob.mx/cms/uploads/attachment/file/304573/Factor_de_Emisi_n_del_Sector_El_ctrico_Nacional_1.pdf

Comisión Reguladora de Energía (CRE). (2019). Factor de emisión del sector eléctrico nacional. Retrieved from https://www.gob.mx/cms/uploads/attachment/file/442910/Aviso_Factor_de_Emisiones_2018.pdf

Devaru, D. G., Maddula, R., Grushecky, S. T., & Gopalakrishnan, B. (2014). Motor-based energy consumption in west Virginia sawmills. Forest Products Journal, 64(1), 33‒40. doi: https://doi.org/10.13073/FPJ-D-13-00070

Di Rienzo, J. A., Casanoves, F., Balzarini, M. G., González, L., Tablada, M., & Robledo, Y. C. (2010). InfoStat versión 2018. Argentina: Universidad Nacional de Córdoba.

Environmental Protection Agency (EPA). (2011). Inventory of U.S. greenhouse gas emissions and sinks: 1990-2009. Retrieved from https://www.epa.gov/sites/production/files/2015-12/documents/us-ghg-inventory-2011-complete_report.pdf

Eshun, J. F., Potting, J., & Leemans, R. (2010). Inventory analysis of the timber industry in Ghana. The International Journal of Life Cycle Assessment, 15(7), 715‒725. doi: https://doi.org/10.1007/s11367-010-0207-0

Food and Agriculture Organization of the United Nations (FAO). (2010). Impact of the global forest industry on atmospheric greenhouse gases. Rome, Italy: Author. Retrieved from http://www.fao.org/3/i1580e/i1580e00.pdf

Frey, H. C., & Rhodes, D. S. (1996). Characterizing, simulating and analyzing variability and uncertainty: An illustration of methods using an air toxics emissions example. Human and Ecological Risk Assessment, 2(4), 762‒797. doi: https://doi.org/10.1023/A:1006962412150

Frohmann, A., Herreros, S., Mulder, N., & Olmos, X. (2012). Huella de carbono y exportaciones de alimentos: Guía práctica. Retrieved from https://repositorio.cepal.org/handle/11362/4013

Galli, A., Wiedmann, T., Ercin, E., Knoblauch, D., Ewing, B., & Giljum, S. (2012). Integrating ecological, carbon and water footprint into a “footprint family” of indicators: definition and role in tracking human pressure on the planet. Ecological Indicators, 16, 100‒112. doi: https://doi.org/10.1016/j.ecolind.2011.06.017

Goodier, C. (2011). Carbon footprint calculator. In D. Mulvaney, & P. Robbins (Eds.), Green Technology: An A-to-Z Guide (pp. 86‒88). London: SAGE Publications. doi: https://doi.org/10.4135/9781412975704

Hanitsch, R. (2002). Energy efficient electric motors. Retrieved from https://www.researchgate.net/profile/Rolf_Dr_Hanitsch/publication/267838427_ENERGY_EFFICIENT_ELECTRIC_MOTORS/links/55d43c0d08ae0b8f3ef93f1d/ENERGY-EFFICIENT-ELECTRIC-MOTORS.pdf

Heath, L. S., Maltby, V., Miner, R., Skog, K. E., Smith, J. E., Unwin, J., & Upton, B. (2010). Greenhouse gas and carbon profile of the US forest products industry value chain. Environmental Science & Technology, 44(10), 3999‒4005. doi: https://doi.org/10.1021/es902723x

Huang, Y. A., Weber, C. L., & Matthews, H. S. (2009). Categorization of scope 3 emissions for streamlined enterprise carbon footprinting. Environmental Science & Technology, 43(22), 8509‒8515. doi: https://doi.org/10.1021/es901643a

Intergovernmental Panel on Climate Change (IPCC). (2001). Orientación del IPCC sobre las buenas prácticas y la gestión de la incertidumbre en los inventarios nacionales de gases de efecto invernadero. In J. Penman, D. Kruger, I. Galbally, T. Hiraishi, B. Nyenzi, S. Emmanuel, … K. Tanabe (Eds.), La cuantificación de las incertidumbres en la práctica (pp. 6.1‒6.35). Hayama, Japan: Author. Retrieved from https://www.ipcc-nggip.iges.or.jp/public/gp/spanish/6_Uncertainty_ES.pdf

Intergovernmental Panel on Climate Change (IPCC). (2006). 2006 IPCC guidelines for national greenhouse gas inventories (H. S. Eggleston, L. Buendia, K. Miwa, T. Ngara, & K. Tanabe [Eds.]). Japan: IGES. Retrieved from https://www.ipcc-nggip.iges.or.jp/public/2006gl/spanish/pdf/0_Overview/V0_0_Cover.pdf

Intergovernmental Panel on Climate Change (IPCC). (2015). Climate Change 2014: Synthesis report. Contribution of working groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Core Writing Team, R. K. Pachauri, & L. A. Meyer [Eds.]). Geneva, Switzerland: Author. Retrieved from www.ipcc.ch/report/ar5/syr/

Jiménez, R. M. (2010). Estimación de emisiones de GEI en inventarios corporativos. Revista Internacional de Estadística y Geografía, 1(1), 40‒43. Retrieved from https://www.inegi.org.mx/rde/rde_01/doctos/rde_01_art5.pdf

Lilliefors, H. W. (1967). On the Kolmogorov-Smirnov test for normality with mean and variance unknown. Journal of the American statistical Association, 62(318), 399‒402. doi: https://doi.org/10.1080/01621459.1967.10482916

Lindholm, E. L., & Berg, S. (2005). Energy requirement and environmental impact in timber transport. Scandinavian Journal of Forest Research, 20(2), 184‒191. doi: https://doi.org/10.1080/02827580510008329

Loeffler, D., Anderson, N., Morgan, T. A., & Sorenson, C. B. (2016). On-site energy consumption at softwood sawmills in Montana. Forest Products Journal, 66(3), 155‒163. doi: https://doi.org/10.13073/FPJ-D-14-00108

Manly, B. F. J. (1997). Randomization, bootstrap, and Monte Carlo methods in biology. New York, USA: Chapman and Hall. doi: https://doi.org/10.1201/9781315273075

Michelsen, O., Solli, C., & Strømman, A. H. (2008). Environmental impact and added value in forestry operations in Norway. Journal of Industrial Ecology, 12(1), 69‒81. doi: https://doi.org/10.1111/j.1530-9290.2008.00008.x

Miner, R., & Perez-Garcia, J. (2007). The greenhouse gas and carbon profile of the global forest products industry. Forest Products Journal, 57(10), 80‒90. Retrieved from http://www.ncasi.org/wp-content/uploads/2019/02/Miner_Perez-Garcia_FPJ_Oct07.pdf

Muthu, S. S. (2016). The carbon footprint handbook. Boca Raton, USA: CRC Press. doi: 10.1201/b18929

Rainforest Alliance. (2010). Manual de buenas prácticas en aserraderos de comunidades forestales. Retrieved from https://www.ccmss.org.mx/wp-content/uploads/Manual-de-buenas-practicas-en-aserraderos-de-comunidades-forestales.pdf

Ramasamy, G., Ratnasingam, J., Bakar, E. S., Halis, R., & Muttiah, N. (2015). Assessment of environmental emissions from sawmilling activity in Malaysia. BioResources, 10(4), 6643‒6662. Retrieved fromhttps://ojs.cnr.ncsu.edu/index.php/BioRes/article/viewFile/BioRes_10_4_6643_Ramasamy_Environmental_Emissions_Sawmilling_Malaysia/3797

Ratnasingam, J., Ramasamy, G., Toong, W., Senin, A. L., Kusno, M. A., & Muttiah, N. (2015). An assessment of the carbon footprint of tropical hardwood sawn timber production. BioResources, 10(3), 5174‒5190. doi: https://doi.org/10.15376/biores.10.3.5174-5190

Reid, H., Huq, S., Inkinen, A., MacGregor, J., Macqueen, D., Mayers, J., ...Tipper, R. (2004). Using wood products to mitigate climate change. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.482.5128&rep=rep1&type=pdf

Rivela, B., Moreira, M. T., & Feijoo, G. (2007). Life cycle inventory of medium density fibreboard. The International Journal of Life Cycle Assessment, 12, 143. doi: https://doi.org/10.1065/lca2006.12.290

Rypdal, K., & Winiwarter, W. (2001). Uncertainties in greenhouse gas emission inventories evaluation, comparability and implications. Environmental Science & Policy, 4(2-3), 107‒116. doi: 10.1016/S1462-9011(00)00113-1

Shapiro, S. S., & Francia, R. S. (1972). An approximate analysis of variance test for normality. Journal of the American Statistical Association, 67(337), 215‒216. doi: https://doi.org/10.1080/01621459.1972.10481232

Schneider, H., & Samaniego, J. (2009). La huella del carbono en la producción, distribución y consumo de bienes y servicios. Retrieved from https://repositorio.cepal.org/bitstream/handle/11362/3753/1/S2009834_es.pdf

Siew, R. Y. (2015). A review of corporate sustainability reporting tools (SRTs). Journal of Environmental Management, 164, 180‒195. doi: https://doi.org/10.1016/j.jenvman.2015.09.010

Wiedmann, T., & Minx, J. (2008). A definition of 'Carbon Footprint'. In C. C. Pertsova (Ed.), Ecological Economics Research Trends (cap. 1, pp. 1‒11). Hauppauge, NY, USA. Nova Science Publishers. Retrieved from https://www.novapublishers.com/catalog/product_info.php?products_id=5999

World Business Council Sustainable Development & World Resources Institute (WBCSD & WRI). (2005). A corporate accounting and reporting standard. Retrieved from https://ghgprotocol.org/corporate-standard

World Resources Institute & World Business Council Sustainable Development (WRI & WBCSD). (2003). The greenhouse gas protocol. Calculation tools. Measurement and estimation uncertainty of GHG emissions. Retrieved from https://ghgprotocol.org/calculation-tools

World Resources Institute & World Business Council Sustainable Development (WRI & WBCSD). (2011). Product life cycle accounting and reporting standard. Retrieved from https://ghgprotocol.org/sites/default/files/standards/Product-Life-Cycle-Accounting-Reporting-Standard_041613.pdf

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2020 Revista Chapingo Serie Ciencias Forestales y del Ambiente