##article.highlights##
- The noise level in the assessed sawmills is high with an average of 93 dB(A).
- The greatest hearing risk to the worker comes from the head saw, resaw and swing saw areas.
- The thermal comfort of 20 °C ensures that the worker can be exposed 100 % of the workday.
- The lighting level is high, exceeding the 2 000 lx recommended for sawmills.
Abstract
Introduction: Sawmill workers carry out their work in an adverse physical environment that influences their well-being, not knowing if safety levels in the area are acceptable.
Objective: To analyze workers’ exposure to noise, thermal comfort, and lighting at five workstations in six sawmills in the El Salto region of Durango, Mexico.
Materials and methods: The physical variables of the work environment were measured directly at three times of the day for seven workdays at five workstations (forklift, edger, swing saw, resaw, and head saw). The maximum allowable time of exposure to noise, thermal comfort through effective temperature, and lighting of the work area were determined. Statistical differences in physical variables between workstations, sawmills and times of the day were detected by analysis of variance and Kruskal-Wallis median range comparison tests.
Results and discussion: The noise level (85 to 102 dB[A]) represents a greater hearing risk at the head saw, resaw and swing saw workstations as it exceeds 90 dB (A). Thermal comfort was 20 °C, which ensures that the worker can be exposed 100 % of the time of the workday to this temperature. Lighting levels were high, exceeding 2 000 lx.
Conclusions: The noise and lighting levels are high in the assessed sawmills and pose a risk to the safety of workers if the mandatory use of ear and eye protectors is not monitored.
References
Adu, S., Adu, G., Effah, B., Kwasi, F. M., & Antwi-Boasiako, C. (2015). Safety measures in wood processing: An important component for the entrepreneur-The case of a local furniture industry in Ghana. International Journal of Innovative Research in Science, Engineering and Technology, 4(5), 2677‒2686. doi: https://doi.org/10.15680/IJIRSET.2015.0405004
Alves, J. U., Minetti, L. J., de Souza, A. P., Silva, K. R., Gomes, J. M., & Fiedler, N. C. (2002). Avaliação do ambiente aliação do ambiente de trabalho na propagação de de trabalho na propagação de Eucalyptus spp. Revista Brasileira de Engenharia Agrícola e Ambiental, 6(3), 481‒486. doi: https://doi.org/10.1590/S1415-43662002000300017
Anjorin, S. A., Jemiluyi, A. O., & Akintayo, T. C. (2015). Evaluation of industrial noise: a case study of two Nigerian industries. European Journal of Engineering and Technology, 3(6), 59‒68. doi: https://doi.org/10.15192/PSCP.ASR.2015.12.2.596
Bates, G., Parker, R., Ashby, L., & Bentley, T. (2001). Fluid intake and hydration status of forest workers-A preliminary investigation. International Journal of Forest Engineering, 12(2), 27‒32. doi: https://doi.org/10.1080/14942119.2001.10702443
Blombäck, P. (2001). Improving occupational safety and health. In T. Enters, P. B. Durst, G. B. Applegate, P. C. S. Kho, & G. Man (Eds.), Applying reduced impact logging to advance sustainable forest management (pp. 267‒281). Thailand: Food and Agriculture Organization of the United Nations-Regional Office for Asia and the Pacific. Retrieved from https://www.cifor.org/library/1095/
da Silva-Lopes, E., Domingos, D. M., & Perrelli-Jarbas, E. (2006). Avaliação de fatores do ambiente de trabalho em uma indústria de erva-mate (Ilex paraguariensis St. Hill.) na região centro-sul do estado do Paraná. Cerne, 12(4), 336‒341. Retrieved from https://www.redalyc.org/html/744/74412405/
da Silva-Lopes, E., Zanlorenzi, E., Couto, L. C., & Minetti, L. J. (2004). Análise do ambiente de trabalho em indústrias de processamento de madeira na região Centro-Sul do Estado do Paraná. Scientia Forestalis, 66, 183‒190. Retrieved from https://www.ipef.br/PUBLICACOES/SCIENTIA/nr66/cap18.pdf
Di Rienzo, J. A., Casanoves, F., Balzarini, M. G., González, L., Tablada, M., & Robledo, C. W. (2018). InfoStat versión 2018. Argentina: Grupo InfoStat. Retrieved from http://www.infostat.com.ar
Fiedler, N. C., Bonelli-Wanderley, F., Nogueira, M., Silva-Oliveira, J. T. D., Paes-Guimarães, P., & Tonetto-Alves, R. (2009). Otimização do layout de marcenarias no sul do espírito santo baseado em parâmetros ergonômicos e de produtividade. Revista Árvore, 33(1), 161‒170. Retrieved from http://repositorio.ufes.br/jspui/bitstream/10/549/1/v33n1a17.pdf
Fiedler, N. C., de Lara-Santos, A. M., Corazza-Gatto, A., da Silva-Lopes, E., & da Silva-Oliveira, J. T. (2007). Avaliação das condições do ambiente de trabalho em atividades de poda de árvores. Cerne, 13(1), 19‒24. Retrieved from https://www.redalyc.org/pdf/744/74413103.pdf
Krilek, J., Kováč, J., Barcík, Š., Svoreň, J., Štefánek, M., & Kuvik, T. (2016). The influence of chosen factors of a circular saw blade on the noise level in the process of cross cutting wood. Wood Research, 61(3), 475‒486. Retrieved from http://www.centrumdp.sk/wr/201603/13.pdf
Lombardi, L. R., Pizzol, V. D., Vidaurre, G., Corletti, R. B., & Barbosa, R. L. F. (2011). Análise ergonômica do trabalho em uma serraria do estado do Espírito Santo. Floresta e Ambiente, 18(3), 243‒247. doi: https://doi.org/10.4322/floram.2011.044
Mäkinen, T. M., & Hassi, J. (2009). Health problems in cold work. Industrial Health, 47(3), 207‒220. doi: https://doi.org/10.2486/indhealth.47.207
Marucci, A., Marucci, D., Monarca, D., Cecchini, M., Colantoni, A., Di Giacinto, S., & Cappuccini, A. (2013). The heat stress for workers employed in a dairy farm. Journal of Agricultural Engineering, 44(4), 170‒174. doi: https://doi.org/10.4081/jae.2013.218
Morabito, M., Iannuccilli, M., Crisci, A., Capecchi, V., Baldasseroni, A., Orlandini, S., & Gensini, G. F. (2014). Air temperature exposure and outdoor occupational injuries: a significant cold effect in Central Italy. Occupational Environmental Medicine, 71(10), 713‒716. doi: https://doi.org/10.1136/oemed-2014-102204
Nájera-Luna, J. A., Aguirre-Calderón, O. A., Treviño-Garza, E. J., Jiménez-Pérez, J., Jurado-Ybarra, E., Corral-Rivas, J. J., & Vargas-Larreta, B. (2011). Rendimiento volumétrico y calidad dimensional de la madera aserrada en aserraderos de El Salto, Durango. Revista Mexicana de Ciencias Forestales, 2(4), 75‒89. Retrieved from http://www.scielo.org.mx/pdf/remcf/v2n4/v2n4a7.pdf
Nandi, S., Toliyat, H. A., & Li, X. (2005). Condition monitoring and fault diagnosis of electrical motors-A review. IEEE Transactions on Energy Conversion, 20(4), 719‒729. doi: https://doi.org/10.1109/TEC.2005.847955
Otoghile, B., Onakoya, P. A., & Otoghile, C. C. (2018). Auditory effects of noise and its prevalence among sawmill workers. International Journal of Medicine and Medical Sciences, 10(2), 27‒30. doi: https://doi.org/10.5897/IJMMS2017.1344
Owoyemi, M. J., Falemara, B., & Owoyemi, A. J. (2017). Noise pollution and control in wood mechanical processing wood industries. Biomedical Statistics and Informatics, 2(2), 54‒60. doi: https://doi.org/10.11648/j.bsi.20170202.13
Parsons, K. C. (2000). Environmental ergonomics: a review of principles, methods and models. Applied Ergonomics, 31(6), 581‒594. doi: https://doi.org/10.1016/S0003-6870(00)00044-2
Petusk-Filipe, A., Moreira da Silva, J. R., Trugilho, P. F., Fiedler, N. C., Rabelo, G. F., & Alvarenga-Botrel, D. (2014). Avaliação de ruído em fábricas de móveis. Cerne, 20(4), 551‒556. doi: https://doi.org/10.1590/0104776020142004959
Reis-Dutra, T., Pinto-Leite, A., & Dutra-Massad. (2012). Avaliação de fatores do ambiente de trabalho em atividades de um viveiro florestal de Curvelo, Minas Gerais. Floresta, 42(2), 269‒276. doi: https://doi.org/10.5380/rf.v42i2.18693
Secretaría del Trabajo y Previsión Social (STyPS). (2001). Norma Oficial Mexicana NOM-011-STPS-2001, Condiciones de seguridad e higiene en los centros de trabajo donde se genere ruido. México: Diario Oficial de la Federación. Retrieved from http://www.stps.gob.mx/bp/secciones/dgsst/normatividad/normas/Nom-011.pdf
Secretaría del Trabajo y Previsión Social (STyPS). (2002). Norma Oficial Mexicana NOM-015-STPS-2001, Condiciones térmicas elevadas o abatidas-Condiciones de seguridad e higiene. México: Diario Oficial de la Federación. Retrieved from http://www.stps.gob.mx/bp/secciones/dgsst/normatividad/normas/Nom-015.pdf
Secretaría del Trabajo y Previsión Social (STyPS). (2008). Norma Oficial Mexicana NOM-025-STPS-2008, Condiciones de iluminación en los centros de trabajo. México: Diario Oficial de la Federación. Retrieved from http://www.stps.gob.mx/bp/secciones/dgsst/normatividad/normas/Nom-025.pdf
Tejeda-Martínez, A., Luyando, E., & Jáuregui, E. (2011). Average conditions of thermal stress in Mexican cities with more than one million inhabitants in the face of climatic change. Atmósfera, 24(1), 15‒30. Retrieved from http://www.scielo.org.mx/pdf/atm/v24n1/v24n1a3.pdf
Teodoreanu, E. (2016). Thermal comfort index. Present Environment and Sustainable Development, 10(2), 105‒11. doi: https://doi.org/10.1515/pesd-2016-0029
Tharmmaphornphilas, W., & Norman, B. A. (2004). A quantitative method for determining proper job rotation intervals. Annals of Operations Research, 128(1-4), 251‒266. doi: https://doi.org/10.1023/B:ANOR.0000019108.15750.ae
Thepaksorn, P., Thongjerm, S., Incharoen, S., Siriwong, W., Harada, K., & Koizumi, A. (2017). Job safety analysis and hazard identification for work accident prevention in para rubber wood sawmills in southern Thailand. Journal of Occupational Health, 59(6), 542‒551. doi: https://doi.org/10.1539/joh.16-0204-CS
Top, Y., Adanur, H., & Öz, M. (2016). Comparison of practices related to occupational health and safety in microscale wood-product enterprises. Safety Science, 82, 374‒381. doi: https://doi.org/10.1016/j.ssci.2015.10.014
Tutuş, A., Demir, N., Çiçekler, M., & Serin, H. (2018). Investigation of physical risk factors in Kahramanmaraş Paper Mill. Journal of Forestry, 19(3), 330‒335. doi: https://doi.org/10.18182/tjf.414136
Vanadziņš, I., Eglīte, M., Baķe, M., Sprūdža, D., Martinsone, Ž., Mārtiņsone, I., ...Sudmalis, P. (2010). Estimation of risk factors of the work environment and analysis of employees' self estimation in the wood processing industry. Proceedings of the Latvian Academy of Sciences. Section B. Natural, Exact, and Applied Sciences, 64(1-2), 73‒78. doi: https://doi.org/10.2478/v10046-010-0016-7
Ziemann, A., Barth, M., & Hehn, M. (2013). Experimental investigation of the meteorologically influenced sound propagation through an inhomogeneous forest site. Meteorologische Zeitschrift, 22(2), 221‒229. doi: https://doi.org/10.1127/0941-2948/2013/0387

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright (c) 2020 Revista Chapingo Serie Ciencias Forestales y del Ambiente