Revista Chapingo Serie Ciencias Forestales y del Ambiente
Benefits from visualization of environmental factor gradients: a case study in a protected area in central Russia
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF

Keywords

ecological scale
phytoindication
plant species
threatened species

How to Cite

Khapugin, A. A. . (2019). Benefits from visualization of environmental factor gradients: a case study in a protected area in central Russia. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 25(3), 383–397. https://doi.org/10.5154/r.rchscfa.2019.01.004

Abstract

Introduction: Ecological scales include plant species, which are responsive to changes in habitat conditions. Such plants act as phytoindicators that integrate many environmental factors. Objective: To identify suitable habitats for searched-for plant species based on phytoindication data. Materials and methods: Altogether, 47 square plots (100 m2) were established within a selected forest area of the Mordovia State Nature Reserve. In each plot, species composition was recorded for further analysis, and the mean values of four environmental factors (shading, soil moisture, soil nitrogen, and soil pH) were calculated using the Tsyganov ecological scale. To visualize changes in factor values, contour maps were created for each factor. To reveal differences between species composition in study plots, Jaccard’s similarity index was calculated. Results and discussion: All study plots have been arranged mainly along gradients of three soil parameters, namely pH, nitrogen availability and moisture, while habitat shading has not acted as strongly. Gradient maps obtained of four selected environmental factors demonstrated remarkable similarity. This suggestion is confirmed by the distinguishing of three areas because of overlapping of these maps. Similarity between values of environmental factors and plant distribution was determined. The use of phytoindication methods allows showing changes in the values of environmental factors in a forest area, and being combined with a species similarity index, it is possible to predict habitat suitability for threatened plants. Conclusions: The possibility of indicating and finding an area suitable for inhabitation of plants based on the phytoindication ecological scale approach was determined. As threatened plants have a narrower range of environmental conditions, this method is especially suitable for these investigations.
https://doi.org/10.5154/r.rchscfa.2019.01.004
PDF

References

Abella, S. R., & Shelburne, V. B. (2004). Ecological species groups of South Carolina’s Jocassee Gorges, southern Appalachian Mountains. Journal of the Torrey Botanical Society, 131(3), 220–231. doi: https://doi.org/10.2307/4126952

Bayanov, N. G. (2015). Climate changes of the northwest of Mordovia during the period of existence of the Mordovia Reserve according to the meteorological observations in Temnikov. Proceedings of the Mordovia State Nature Reserve, 14, 212–219. Retrieved from https://elibrary.ru/item.asp?id=23032832

Bednova, O. V. (2014). Ecological standardization and indication technology of the forest ecosystems state in urban specially protected natural areas. Forestry Bulletin, 6, 36–52. Retrieved from https://elibrary.ru/item.asp?id=22648766

Begon, M., Townsend, C. R., & Harper, J. L. (2005). Ecology: From Individuals to Ecosystems. Malden, MA, USA: Wiley-Blackwell.

Budzáková, M., Galvanek, D., Littera, P., & Sibik, J. (2013). The wind and fire disturbance in Central European mountain spruce forests: the regeneration after four years. Acta Societatis Botanicorum Poloniae, 82(1), 13–24. doi: https://doi.org/10.5586/asbp.2013.002

Crain, B. J., & White, J. W. (2011). Categorizing locally rare plant taxa for conservation status. Biodiversity and Conservation, 20(3), 451–463. doi: https://doi.org/10.1007/s10531-010-9929-3

Cui, B. S., Zhai, H. J., Dong, S. K., Chen, B., & Liu, S. L. (2009). Multivariate analysis of the effects of edaphic and topographical factors on plant distribution in the Yilong lake basin of Yun-Gui Plateau, China. Canadian Journal of Plant Science, 89(1), 209–219. doi: https://doi.org/10.4141/CJPS08013

Dubuis, A., Rossier, L., Pottier, J., Pellissier, L., Vittoz, P., & Guisan, A. (2013). Predicting current and future spatial community patterns of plant functional traits. Ecography, 36(11), 1158–1168. doi: https://doi.org/10.1111/j.1600-0587.2013.00237.x

Ellenberg, H., Weber, H. E., Düll, R., Wirth, V., & Werner, W. (2001). Zeigerwerte von Pflanzen in Mitteleuropa, 3., durch gesehene Aufl. Scripta Geobotanica, 18, 1–261. Retrieved from http://www.ecology.uni-jena.de/ecologymedia/Zeigerwerte-p-2094.pdf

Gebremedihin, K. M., Birhane, E., Tadesse, T., & Gbrewahid, H. (2018). Restoration of degraded drylands through exclosures enhancing woody species diversity and soil nutrients in the highlands of Tigray, Northern Ethiopia. Nature Conservation Research, 3(1), 1–20. doi: https://doi.org/10.24189/ncr.2018.001

Goebel, P. C., Palik, B. J., Kirkman, L. K., Drew, M. B., West, L., & Pederson, D. C. (2001). Forest ecosystems of a Lower Gulf Coastal Plain landscape: multifactor classification and analysis. Journal of the Torrey Botanical Society, 128(1), 47–75. Retrieved from https://www.ncrs.fs.fed.us/pubs/jrnl/2001/nc_2001_goebel_002.pdf

Gusev, A. P. (2009). Specific features of early stages of progressive succession in an anthropogenic landscape: An example from southeastern Belarus. Russian Journal of Ecology, 40(3), 160–165. doi: https://doi.org/10.1134/S1067413609030035

Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4(1), 9. Retrieved from http://palaeo-electronica.org/2001_1/past/past.pdf

Host, G. E., & Pregitzer, K. S. (1991). Ecological species groups for upland forest ecosystems of northwestern Lower Michigan. Forest Ecology and Management, 43(1-2), 87–102. doi: https://doi.org/10.1016/0378-1127(91)90078-A

Jaccard, P. (1901). Étude comparative de la distribution florale dans une portion des Alpes et du Jura. Bulletin de la Societe Vaudoise des Sciences Naturelles, 37, 547–549. Retrieved from https://upload.wikimedia.org/wikipedia/commons/e/e0/%C3%89tude_comparative_de_la_distribution_florale_dans_une_portion_des_Alpes_et_du_Jura.pdf

Jarema, S. I., Samson, J., McGill, B. J., & Humphries, M. M. (2009). Variation in abundance across a species' range predicts climate change responses in the range interior will exceed those at the edge: A case study with North American beaver. Global Change Biology, 15(2), 508–522. doi: https://doi.org/10.1111/j.1365-2486.2008.01732.x

John, R., Dalling, J. W., Harms, K. E., Yavitt, J. B., Stallard, R. F., Mirabello, M., Hubbell, S. P., …Foster, R. B. (2007). Soil nutrients influence spatial distributions of tropical tree species. Proceedings of the National Academy of Sciences of the United States of America, 104(3), 864–869. doi: https://doi.org/10.1073/pnas.0604666104

Khan, W., Khan, S. M., Ahmad, H., Ahmad, Z., & Page, S. (2016). Vegetation mapping and multivariate approach to indicator species of a forest ecosystem: A case study from the Thandiani sub Forests Division (TsFD) in the Western Himalayas. Ecological Indicators, 71, 336–351. doi: https://doi.org/10.1016/j.ecolind.2016.06.059

Khapugin, A. A., Vargot, E. V., & Chugunov, G. G. (2016). Vegetation recovery in fire-damaged forests: A case study at the southern boundary of the taiga zone. Forestry Studies, 64, 39–50. doi: https://doi.org/10.1515/fsmu-2016-0003

Khapugin, A. A. (2017). Hieracium sylvularum (Asteraceae) in the Mordovia State Nature Reserve: invasive plant or historical heritage of the flora? Nature Conservation Research, 2(4), 40–52. doi: https://doi.org/10.24189/ncr.2017.013

Khapugin, A. A., Silaeva, T. B., Vargot, E. V., Chugunov, G. G., Grishutkina, G. A., Grishutkin, O. G., …Orlova, Ju. S. (2017). Estimation of taxa included in the first volume of the Red Data Book of the Republic of Mordovia (Russia) using the IUCN Red List Categories and Criteria. Nature Conservation Research, 2(1), 164–189. doi: https://doi.org/10.24189/ncr.2017.004

Khapugin, A. A., & Astashkina, I. Yu. (2018). Towards inventory of the vegetation cover of the Mordovia State Nature Reserve. Proceedings of the Mordovia State Nature Reserve, 20, 203–216. Retrieved from https://elibrary.ru/item.asp?id=32454013

Komarov, A. S., & Zubkova, E. V. (2012). Dynamics of a distribution of ecological niches in plant communities at succession. Mathematical Biology and Bioinformatics, 7(1), 152–161. Retrieved from http://www.mathnet.ru/links/03853044ecf19b1ca6b299aaf24164ac/mbb95.pdf

Konollová, I., & Chytry, M. (2004). Oak hornbeam forests of the Czech Republic: geographical and ecological approach to vegetation classification. Preslia, 76, 291–311. Retrieved from http://www.preslia.cz/P044CKno.pdf

Kuznetsov, N. I. (2014). The conditions of existence and main features of the vegetation cover structure on the territory of Mordovia State Reserve. 1939 year. Proceedings of the Mordovia State Nature Reserve, 12, 79–195. Retrieved from https://elibrary.ru/item.asp?id=21246904

Landolt, E., Bäumler, B., Erhardt, A., Hegg, O., Klötzli, F., Lämmler, W., …Wohlgemuth, T. (2010). Ecological indicator values and biological attributes of the flora of Switzerland and the Alps. Bern, Switzerland: Haupt.

Lennon, J. J., Beale, C. M., Reid, C. L., Kent, M. & Pakeman, R. J. (2011). Are richness patterns of common and rare species equally well explained by environmental variables? Ecography, 34(4), 529–539. doi: https://doi.org/10.1111/j.1600-0587.2010.06669.x

Pajunen, A. M., Kaarlejärvi, E. M., Forbes, B. C., & Virtanen, R. (2010). Compositional differentiation, vegetation-environment relationships and classification of willow-characterized vegetation in the western Eurasian Arctic. Journal of Vegetation Science, 21(1), 107–119. doi: https://doi.org/10.1111/j.1654-1103.2009.01123.x

Popov, S. Y., & Makukha, Y. A. (2019). Distribution patterns of Ptilium crista-castrensis (Bryophyta, Hypnaceae) in the East European Plain and Eastern Fennoscandia. Nature Conservation Research, 4(1), 93–98. doi: https://doi.org/10.24189/ncr.2019.007

Pottier, J., Dubuis, A., Pellissier, L., Maiorano, L., Rossier, L., Randin, C. F., ...Guisan, A. (2013). The accuracy of plant assemblage prediction from species distribution models varies along environmental gradients. Global Ecology and Biogeography, 22(1), 52–63. doi: https://doi.org/10.1111/j.1466-8238.2012.00790.x

Potts, M. D., Ashton, P. S., Kaufman, L. S., & Plotkin, J. B. (2002). Habitat patterns in tropical rain forests: a comparison of 105 plots in northwest Borneo. Ecology, 83, 2782–2797. doi: https://doi.org/10.1890/0012-9658(2002)083[2782:HPITRF]2.0.CO;2

Priputina, I., Zubkova, E., Shanin, V., Smirnov, V., & Komarov, A. (2014). Evidence of plant biodiversity changes as a result of nitrogen deposition in permanent pine forest plots in central Russia. Ecoscience, 21(3–4), 286–300. doi: https://doi.org/10.2980/21-(3-4)-3681

Priputina, I. V., Zubkova, E. V., & Komarov, A. S. (2015). Retrospective assessment of the dynamics of nitrogen availability in pine forests of the Near-Moscow Region based on the data of phytoindication. Contemporary Problems of Ecology, 8(7), 916–924. doi: https://doi.org/10.1134/S1995425515070112

Ramenskiy, L. G., Tsatsenkin, I. A., Chijikov, O. N., & Antipin, N. A. (1956). Ecological evaluation of natural grasslands by the use of vegetation cover. Moscow: Selkhozgiz. Retrieved from http://sinref.ru/000_uchebniki/04800selskoe/039_ekologicheskaia_ocenka_kormovih_ugodii_ramenski_1956/000.htm

Seregin, A. P. (2014). Further east: eutrophication as a major threat to the flora of Vladimir Oblast, Russia. Environmental Science and Pollution Research, 21(22), 12883–12897. doi: https://doi.org/10.1007/s11356-014-3152-9

Silaeva, T. B. (2017). Red data book of the Republic of Mordovia. Vol. 1: Rare plants and fungi (2nd ed.). Saransk: Publisher of the Mordovia State University. Retrieved from http://nature-mordovia.ru/index.php/krasnaya-kniga?id=654

Smirnova, O. V., Lugovaya, D. V., & Prokazina, T. S. (2013). Model reconstruction of restored taiga forest cover. Biology Bulletin Reviews, 3(6), 493–504. doi: https://doi.org/10.1134/S207908641306008X

StatSoft, Inc. (2007). STATISTICA for Windows. Data Analysis Software System, version 8.0. Tulsa, OK, USA: Author.

Sterk, M., Gort, G., De Lange, H., Ozinga, W., Sanders, M., Van Looy, K., & Van Teeffelen, A. (2016). Plant trait composition as an indicator for the ecological memory of rehabilitated floodplains. Basic and Applied Ecology, 17(6), 479–488. doi: https://doi.org/10.1016/j.baae.2016.05.002

Golden Software Inc. (2012). Surfer mapping system. v. 11.1.719 software. USA Author. Retrieved from http://www.goldensoftware.com/products/surfer/

Tereshkin, I. S., & Tereshkina, L. V. (2006). Vegetation of the Mordovia Reserve. Successive series of the successions. Proceedings of the Mordovia State Nature Reserve, 7, 186–287. Retrieved from http://zapoved-mordovia.ru/biblio/trudy_mgpz_VII_2006.djvu

Tsyganov, D. N. (1983). Phytoindication of ecological regimes in the mixed coniferous-broad-leaved forest subzone. Moscow: Nauka.

Vargot, E. V., Khapugin, A. A., Chugunov, G. G., & Grishutkin, O. G. (2016). Vascular plants of the Mordovia State Nature Reserve (an annotated species list). Moscow: Commission of RAS on biodiversity conservation; IPEE RAS. Retrieved from http://zapoved-mordovia.ru/uploads/images/nauchnaia-rabota/izdania-zapovednika/1%20Flora_Combine.pdf

Wamelink, G. W. W., Goedhart, P. W., & Frissel, J. Y. (2014). Why some plant species are rare. PLoS ONE, 9(7), e102674. doi: https://doi.org/10.1371/journal.pone.0102674

Wheeler, B. D., & Proctor, M. C. F. (2000). Ecological gradients, subdivisions and terminology of north-west European mires. Journal of Ecology, 88(2), 187–203. doi: https://doi.org/10.1046/j.1365-2745.2000.00455.x

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2019 Revista Chapingo Serie Ciencias Forestales y del Ambiente