Revista Chapingo Serie Ciencias Forestales y del Ambiente
Nutrient input via gross rainfall, throughfall and stemflow in scrubland species in northeastern Mexico
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF

Keywords

Casimiroa greggii
Acacia farnesiana
thornscrub
pH
electrical conductivity

How to Cite

Luna-Robles, E. O., Cantú-Silva, I., González-Rodríguez, H., Marmolejo-Monsiváis, J. G., Yáñez-Díaz, M. I., & Béjar-Pulido, S. J. (2019). Nutrient input via gross rainfall, throughfall and stemflow in scrubland species in northeastern Mexico. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 25(2), 235–251. https://doi.org/10.5154/r.rchscfa.2018.12.096

##article.highlights##

  • The nutrients that reach the soil vary between rainfall pathways and species.
  • Fe was the most abundant micronutrient (2 938.29 g·ha-1·year-1); Casimiroa greggii provided 31.6 %.
  • Ca was the most abundant macronutrient (319.31 kg·ha-1·año-1); Acacia farnesiana provided 22.6 %.
  • Throughfall is the one that deposits more quantity of nutrients to the soil.

Abstract

Introduction: Precipitation is an important factor in the input of nutrients to ecosystems. In some cases, rainfall can add elements that are not available due to area conditions. Objective: To compare the nutritional contribution in gross rainfall (Pi) and rainwater reaching the soil by throughfall (Pd) and stemflow (Ef) of scrubland species. Materials and methods: A total of 41 rainfall events were evaluated in northeastern Mexico in the period September 2016-September 2017. Precipitation volumes were recorded and their chemical composition were analyzed: pH, electrical conductivity and contribution of macronutrients (Ca, Mg, K) and micronutrients (Fe, Mn, Zn and Cu). Results and discussion: Pi accumulated 508.97 mm. Pd is the one that deposits more nutrients to the soil. The net contribution (Pd+Ef) indicated that Fe was the most deposited micronutrient with 2 938.29 g·ha-1·year-1, of which Casimiroa greggii (S. Watson) F. Chiang contributed 31.59 %. The macronutrient with greater presence was Ca with 319.31 kg·ha-1·year-1, being Acacia farnesiana (L.) Willd. the one that achieved greater flow of the mineral (22.66 %). pH and electrical conductivity were similar (Kruskal-Wallis, P > 0.05) in the three types of rainfall.  Conclusion: The precipitation chemistry is modified after passing the canopy of each species, either to enrich or remove nutrient concentrations, playing an important role in the biogeochemical cycles of the ecosystem.
https://doi.org/10.5154/r.rchscfa.2018.12.096
PDF

References

Abbasian, P., Attarod, P., Sadeghi, S. M. M., Van Stan, J. T., & Hojjati, S. M. (2015). Throughfall nutrients in a degraded indigenous Fagus orientalis forest and a Picea abies plantation in the North of Iran. Forest Systems, 24(3), 2171–9845. doi: https://doi.org/10.5424/fs/2015243-06764

André, F., Jonard, M., & Ponette, Q. (2008). Effects of biological and meteorological factors on stemflow chemistry within a temperate mixed Oak-beech stand. Science of the Total Environment, 393(1), 72–83. doi: https://doi.org/10.1016/j.scitotenv.2007.12.002

Béjar, P. S., Cantú, S. I., Domínguez, G. T., González, R. H., Marmolejo, M. J., Yáñez, D. M., & Luna, R. E. (2018). Redistribución de la precipitación y aporte de nutrimentos en Pinus cooperi C.E. Blanco. Revista Mexicana de Ciencias Forestales, 9(50), 94–120. doi: https://doi.org/10.29298/rmcf.v9i50.237

Cantú, S. I., & González, R. H. (2001). Interception loss, throughfall and stemflow chemistry in pine and oak forests in northeastern Mexico. Tree Physiology, 21(12-13), 1009–1013. Retrieved from https://www.researchgate.net/publication/11847169

Dawoe, E. K., Barnes, V. R., & Oppong, S. K. (2018). Spatio-temporal dynamics of gross rainfall partitioning and nutrient fluxes in shaded-cocoa (Theobroma cocoa) systems in a tropical semi-deciduous forest. Agroforestry Systems, 92(2), 397–413. doi: https://doi.org/10.1007/s10457-017-0108-3

Duarte, A. F., Gioda, A., Ziolli, R., & Duó, D. (2013). Contaminación atmosférica y deposición húmeda en la Amazonia brasileña. Revista Cubana de Salud Pública, 39(4), 627–639. Retrieved from http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-34662013000400002

Germer, S., Elsenbeer, H., & Moraes, J. M. (2006). Throughfall and temporal trends of rainfall redistribution in an open tropical rainforest, south-western Amazonia (Rondônia, Brazil). Hydrology and Earth System Sciences Discussions, 10(3), 383–393. doi: https://doi.org/10.5194/hess-10-383-2006.

Germer, S., Zimmermann, A., Neill, C., Krusche, A. V., & Elsenbeer, H. (2012). Disproportionate single-species contribution to canopy-soil nutrient flux in an Amazonian rainforest. Forest Ecology and Management, 267, 40–49. doi: https://doi.org/10.1016/j.foreco.2011.11.041

González, R. H., Ramírez, L. R. G., Cantú, S. I., Gómez, M. M. V., & Uvalle, S.J. I. (2010). Composición y estructura de la vegetación en tres sitios del estado de Nuevo León, México. Polibotánica, 29) 91–106. Retrieved from http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-27682010000100004

International Business Machines (IBM). (2013). IBM SPSS Statistics for Windows, version 22.0. Armonk, NY, USA: IBM Corp.

Jaramillo, R. A. (2003). La lluvia y el transporte de nutrimentos dentro de ecosistemas de bosque y cafetales. Cenicafé, 54(2), 134–144. Retrieved from http://hdl.handle.net/10778/249

Jiménez, R. C., Calvo, A. J. C., & Arias, A. D. (2006). Lavado de nutrientes en plantaciones forestales de Vochysia ferruginea Mart. y Vochysia guatemalensis Donn. Sm., Sarapiquí, Costa Rica. Revista Forestal Mesoamericana Kurú, 3(8), 16–26. Retrieved from http://revistas.tec.ac.cr/index.php/kuru/article/view/512/439

Levia, D. F., & Herwitz, S. R. (2005). Interspecific variation of bark water storage capacity of three deciduous tree species in relation to stemflow yield and solute flux to forest soils. CATENA, 64(1), 117–137. doi: https://doi.org/10.1016/j.catena.2005.08.001

Lida, S. I., Tanaka, T., & Sugita, M. (2005). Change of interception process due to the succession from Japanese red pine to evergreen oak. Journal of Hydrology, 315, 154–166. doi: https://doi.org/10.1016/j.jhydrol.2005.03.024

Lilienfein, J., & Wilcke, W. (2004). Water and element input into native, agri-and silvicultural ecosystems of the Brazilian savanna. Biogeochemistry, 67(2), 183–212. doi: https://doi.org/10.1023/B:BIOG.0000015279.48813.9d

Liu, W., Fox, J. E., & Xu, Z. (2003). Nutrient budget of a montane evergreen broad‐leaved forest at Ailao Mountain National Nature Reserve, Yunnan, southwest China. Hydrological Processes, 17(6), 1119–1134. doi: https://doi.org/10.1002/hyp.1184

Návar, J., González, J. M., & González, H. (2009). Gross precipitation and throughfall chemistry in legume species planted in Northeastern México. Plant and Soil, 318(1-2), 15–26. doi: https://doi.org/10.1007/s11104-008-9812-0

Pérez, S. M., Cetina, A. V. M., Aldrete, A., Fenn, M. E., & Landois, L. L. (2006). Química de la precipitación pluvial en dos bosques de la cuenca de la Ciudad de México. Agrociencia, 40(2), 239–248. Retrieved from http://www.redalyc.org/pdf/302/30240209.pdf

Segovia, Z. J. A., Delgadillo, H. F., Lares, R. M. L., Huerta, D. M. A., Muñoz, B. A., & Torres, D. E. V. (2009). Aporte atmosférico y concentración de hierro disuelto en la capa superficial del Golfo de California. Ciencias Marinas, 35(1), 75–90. Retrieved from http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0185-38802009000100006

Shen, W., Ren, H., Jenerette, G. D., Hui, D., & Ren, H. (2013). Atmospheric deposition and canopy exchange of anions and cations in two plantation forests under acid rain influence. Atmospheric Environment, 64, 242–250. doi: https://doi.org/10.1016/j.atmosenv.2012.10.015

Staelens, J., De-Schrijver, A., Verheyen, K., & Verhoest, N. E. (2008). Rainfall partitioning into throughfall, stemflow, and interception within a single beech (Fagus sylvatica L.) canopy: Influence of foliation, rain event characteristics, and meteorology. Hydrological Processes, 22(1), 33–45. doi: https://doi.org/10.1002/hyp.6610

Taghi, A. M., Attarod, P., & Bayramzadeh, V. (2013). The role of rainfall size in canopy interception loss: An observational study in a typical beech forest. Middle East Journal of Scientific Research, 13(7), 876–882. doi: https://doi.org/10.5829/idosi.mejsr.2013.13.7.2721

Yáñez, D. M. I., Cantú, S. I., González, R. H., & Uvalle, S. J. I. (2014). Redistribución de la precipitación en tres especies arbustivas nativas y una plantación de eucalipto del noreste de México. Tecnología y Ciencias del Agua, 5(2), 71–84. Retrieved from http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-24222014000200005&lng=es&nrm=iso&tlng=es

Zhang, Y. F., Wang, X. P., Pan, Y. X., & Hu, R. (2016). Variations of nutrients in gross rainfall, stemflow, and throughfall within revegetated desert ecosystems. Water, Air, & Soil Pollution, 227, 183. doi: https://doi.org/10.1007/s11270-016-2878-z

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2019 Revista Chapingo Serie Ciencias Forestales y del Ambiente