##article.highlights##
- Species: Arbutus unedo, Rhamnus alaternus, Quercus ilex, Q. faginea, Fraxinus ornus and Acer granatense.
- Species were planted under three densities of Pinus halepensis.
- Gas exchange in the field was regulated by radiation and vapor pressure deficit.
- A. unedo, R. alaternus and Q. ilex (evergreens) were better adapted to the densities evaluated.
- Deciduous species showed lower gas exchange and greater water use efficiency.
Abstract
Introduction: Resprouter species, by regenerating rapidly, can maintain an optimal carbon balance and improve the resilience of ecosystems that have been disturbed or are at high risk of fire. Objective: To assess the effect of light availability and soil moisture on the ecophysiological variables of six resprouter species planted under cover of Pinus halepensis Mill. Materials and methods: Arbutus unedo L., Rhamnus alaternus L., Quercus ilex L., Quercus faginea Lam., Fraxinus ornus L. and Acer granatense Boiss. were planted in plots with three pine densities per hectare: HD = 800 to 1 100, MD = 300 to 600 and LD = 100 to 250. The species were also grown in the nursery, trying to maintain the same solar radiation conditions. Photosynthesis (A), stomatal conductance (Gs), photosystem II maximum efficiency (Fv/Fm) and water use efficiency (IWUE) were measured. Results and discussion: Evergreen sclerophyll species (A. unedo, R. alaternus and Q. ilex) showed higher photosynthetic capacity, lower photoinhibition and lower IWUE than deciduous species. In HD, plants showed lower photosynthetic capacity (P < 0.01) and higher photoprotection (P < 0.001). The IWUE was similar under the three pine forest densities. In the nursery, A was high under 100 % and 50 % light conditions; Gs was higher under 20 % conditions; and IWUE was high under 100 % light. Conclusion: The physiological variables of the species were conditioned by shading and changes in water demand produced by tree cover.References
Björkman, O., & Demmig, B. (1987). Photon yield of O2 evolution and chlorophyll fluorescence at 77k among vascular plants of diverse origins. Planta, 170(4), 489‒504. doi: https://doi.org/10.1007/BF00402983
Bladé, I., & Castro-Díez, Y. (2010). Atmospheric trends in the Iberian Peninsula during the instrumental period in the context of natural variability. In F. F. Pérez, & R. Boscolo (Eds.), Climate in Spain: Past, present and future (pp. 25‒41). España: CLIVAR. Retrieved from https://digital.csic.es/handle/10261/33470
Forner, S. A., Aranda, I., Granier, A., & Valladares, F. (2014). Differential impact of the most extreme drought event the last half century on growth and sap flow in two coexisting Mediterranean trees. Plant Ecology, 215(7), 703‒719. doi: https://doi.org/10.1007/s11258-014-0351-x
Galiano, L., Martínez-Vilalta, J., & Lloret, F. (2011). Carbon reserves and canopy defoliation determine the recovery of Scots pine 4 yr after a drought episode. New Phytologyst, 190(3), 750‒759. doi: https://doi.org/10.1111/j.1469-8137.2010.03628.x
García de la Serrana, R., Vilagrosa, A., & Alloza, J. A. (2015). Pine mortality in southeast Spain after an extreme dry and warm year: Interactions among drought stress, carbohydrates and bark beetle attack. Trees, 29(6), 1791–1804. doi: https://doi.org/10.1007/s00468-015-1261-9
Gavinet, J., Vilagrosa, A., Chirino, E., Granados, M. E., Vallejo, V. R., & Prévosto, B. (2015). Hardwood seedling establishment below Aleppo pine depends on thinning intensity in two Mediterranean sites. Annals of Forest Science, 72(8), 999‒1008. doi: https://doi.org/10.1007/s13595-015-0495-4
Gómez-Aparicio, L., Valladares, F., & Zamora, R. (2006). Differential light responses of Mediterranean tree saplings: linking ecophysiology with regeneration niche in four co-occurring species. Tree Physiology, 26(7), 947‒958. doi: https://doi.org/10.1093/treephys/26.7.947
Gortan, E., Nardini, A., Gascó, A., & Salleo, S. (2009). The hydraulic conductance of Fraxinus ornus leaves is constrained by soil water availability and coordinated with gas exchange rates. Tree Physiology, 29(4), 529‒539. doi: https://doi.org/10.1093/treephys/tpn053
Granados, M. E., Vilagrosa, A., Chirino, E., & Vallejo, V. R. (2016). Reforestation with resprouter species to increase diversity and resilience in Mediterranean pine forests. Forest Ecology and Management, 362, 231‒240. doi: https://doi.org/10.1016/j.foreco.2015.12.020
Hasselquist, N. J., Allen, M. F., & Santiago, L. S. (2010). Water relations of evergreen and drought-deciduous trees along a seasonally dry tropical forest chronosequence. Oecologia, 164(4), 881‒890. doi: https://doi.org/10.1007/s00442-010-1725-y
Intergovernmental Panel on Climate Change (IPCC). (2014). Climate Change 2014: Synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate. Geneva, Switzerland: Author. Retrieved from https://www.ipcc.ch/site/assets/uploads/2018/05/SYR_AR5_FINAL_full_wcover.pdf
Krause, G., & Weis, E. (1984). Chlorophyll fluorescence as a tool in plant physiology. II. Interpretation of fluorescence signals. Photosynthesis Research, 5(2), 139‒157. doi: https://doi.org/10.1007/BF00028527
Larcher, W. (1980). Physiological plant ecology. Germany: Springer-Verlag.
Long, S., Humphries, S., & Falkowski, P. (1994). Photoinhibition of photosynthesis in nature. Annual Review of Plant Physiology and Plant Molecular Biology, 45, 633‒662. doi: https://doi.org/10.1146/annurev.pp.45.060194.003221
Martínez-Vilalta, J., Prat, E., Oliveras, I., & Piñol, J. (2002). Xylem hydraulic properties of roots and stems of nine Mediterranean woody species. Oecologia, 133(1), 19‒29. doi: https://doi.org/10.1007/s00442-002-1009-2
McDowell, N. G. (2011). Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality. Plant Physiology, 155(3), 1051–1059. doi: https://doi.org/10.1104/pp.110.170704
McDowell, N. G., Fisher, R. A., Xu, C., Domec, J. C., Hölttä, T., Mackay, D. S., …Pockman, W. T. (2013). Evaluating theories of drought-induced vegetation mortality using a multimodel-experiment framework. New Phytologist, 200(2), 304‒321. doi: https://doi.org/10.1111/nph.12465
Mediavilla, S., & Escudero, A. (2003). Stomatal responses to drought of mature trees and seedlings of two co-occurring Mediterranean oaks. Forest Ecology and Management, 187(2-3), 281‒294. doi: https://doi.org/10.1016/j.foreco.2003.07.006
Morales, F., Abadía, A., & Abadía, J. (2006). Photoinhibition and photoprotection under nutrient deficiency, drought, and salinity. In B. Demmig-Adams, W. W. Adams III, & A. K. Mattoo (Eds.), Photoprotection, photoinhibition, gene regulation and environment (pp. 65‒85). The Netherlands: Springer. Retrieved from https://www.springer.com/la/book/9781402035647
Pausas, J. G., Pratt, B., Keeley, J. E., Jacobsen, A. L., Ramirez, A. R., Vilagrosa, A., …Davis, S. D. (2016). Towards understanding resprouting at the global scale. New Phytologist, 209(3), 945–954. doi: https://doi.org/10.1111/nph.13644
Pausas, J. G., & Keeley, J. E. (2017). Epicormic resprouting in fire-prone ecosystems. Trends in Plant Science, 22(12), 1008–1015. doi: https://doi.org/10.1016/j.tplants.2017.08.010
Pérez-Cueva, A. (1994). Atlas climático de la comunidad Valenciana. Valencia, España: Generalitat Valenciana. Retrieved from https://www.llig.gva.es/es/383-9788448203108.html
Rivas-Martínez, S. (1987). Memoria del mapa de series de vegetación de España. Madrid, España: Ministerio de Agricultura, Pesca y Alimentación. Retrieved from https://floramontiberica.files.wordpress.com/2012/09/mapa_series_vegetacion_1987.pdf
Rodríguez-Calcerrada, J., Li, M., López, R., Cano, F. J., Oleksyn, J., Atkin, O. K, …Gil, L. (2016). Drought-induced shoot dieback starts with massive root xylem embolism and variable depletion of nonstructural carbohydrates in seedlings of two tree species. New Phytologist, 213(2), 597–610 doi: https://doi.org/10.1111/nph.14150
Rodríguez-Rodríguez, M. C., Jordano, P., & Valido, A. (2015). Hotspots of damage by antagonists shape the spatial structure of plant–pollinator interactions. Ecology, 96(8), 2181–2191. doi: https://doi.org/10.6084/m9.figshare.c.3307887.v1
Sánchez-Salguero, R., Navarro-Cerrillo, R. M., Camarero, J. J., & Fernández-Cancio, A. (2012). Selective drought-induced decline of pine species in southeastern Spain. Climatic Change, 113(3-4), 767–785. doi: https://doi.org/10.1007/s10584-011-0372-6
StatSoft Inc. (2012). STATISTICA 12. Tulsa, OK, USA: Author.
Urli, M., Porté, A. J., Cochard, H., Guengant, Y., Burlett, R., & Delzon, S. (2013). Xylem embolism threshold for catastrophic hydraulic failure in angiosperm trees. Tree Physiology, 33(7), 672–683. doi: https://doi.org/10.1093/treephys/tpt030
Valladares, F., Aranda, I., & Sánchez-Gómez, D. (2004). La luz como factor ecológico y evolutivo para las plantas y su interacción con el agua. Ecología del bosque mediterráneo en un mundo cambiante (pp. 335–369). Madrid, España: Ministerio del Medio Ambiente EGRAF.
Valladares, F., & Pearcy, E. F. (2002). Drought can be more critical in the shade than in the sun: a field study of carbon gain and photo-inhibition in a Californian shrub during a dry El Niño year. Plant Cell and Environmental, 25(6), 749–759. doi: https://doi.org/10.1046/j.1365-3040.2002.00856.x
Vilagrosa, A., Bellot, J., Vallejo, V. R., & Gil-Pelegrin, E. (2003). Cavitation, stomatal conductance, and leaf dieback in seedlings of two co-occurring Mediterranean shrubs during an intense drought. Journal of Experimental Botany, 54(390), 2015–2024. doi: https://doi.org/10.1093/jxb/erg221
Vilagrosa, A., Hernández, E. I., Luis, V. C., Cochard, H., & Pausas J. G. (2014). Physiological differences explain the co-existence of different regeneration strategies in Mediterranean ecosystems. New Phytologist, 201(4), 1277–1288. doi: https://doi.org/10.1111/nph.12584
Vilagrosa, A., Morales, F., Abadia, A., Bellot, J., Cochard, H., & Gil-Pelegrin, E. (2010). Are symplast tolerance to intense drought conditions and xylem vulnerability to cavitation coordinated. An integrated analysis of photosynthetic, hydraulic and leaf level processes in two Mediterranean drought resistant species. Environmental and Experimental Botany, 69(3), 232–242. doi: https://doi.org/10.1016/j.envexpbot.2010.04.013
Walker, W. R. (1989). Guidelines for designing and evaluating surface irrigation system. Rome, Italy: Food and Agriculture Organization of the United Nations (FAO). Retrieved from http://www.fao.org/3/T0231E/T0231E00.htm

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright (c) 2019 Revista Chapingo Serie Ciencias Forestales y del Ambiente