Revista Chapingo Serie Ciencias Forestales y del Ambiente
Influence of temperature and irradiation on starch concentration in Carya illinoinensis K. Koch varieties Wichita and Western
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF

Keywords

pecan tree
vegetative reserves
environmental factors
deciduous fruit tree
linear regression

How to Cite

Briceño-Contreras, E. A. ., Moreno-Resendez, A., Valenzuela-Núñez, L. M., García-De la Peña, G.-D. la P., Esparza-Rivera, J. R. ., Rodríguez-Martínez, R.-M., & Molina-Ochoa, J. (2019). Influence of temperature and irradiation on starch concentration in Carya illinoinensis K. Koch varieties Wichita and Western. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 25(3), 305–314. https://doi.org/10.5154/r.rchscfa.2018.12.089

##article.highlights##

  • The starch concentration in the root and trunk of pecan (Carya illinoinensis) was determined.
  • The starch in the root is significantly related to temperature and radiation.
  • In the trunk, starch and environmental factors were not significantly related.
  • The Wichita variety is the most adapted to the region’s environmental conditions.
  • The starch concentration in the root is higher under conditions of 15 to 20 °C, and 10 to 15 MJ·m - 2 .

Abstract

Introduction: The pecan tree (Carya illinoinensis K. Koch) is a species native to northern Mexico and the Southeastern United States; the two countries dominate pecan production worldwide. Objective: To determine the influence of temperature and irradiation on the starch concentrations in the root and trunk of C. illinoinensis varieties Wichita and Western. Materials and methods: Starch was quantified monthly during the July 2016 - June 2017 production cycle. Average monthly temperature and irradiation data were obtained from the INIFAP weather station at the La Laguna Experimental Field. Regression analyses were done using SPSS 18.0. Results and discussion: The Wichita and Western varieties showed a significant relationship (P < 0.05) between root starch cincentrations and environmental factors; in the trunk, the relationship was not significant. In both varieties, the maximum starch concentrations in the root is recorded when the temperature ranges from 15 to 20 °C, and the irradiation rate ranges from 10 to 15 MJ·m-2. Conclusion: The Wichita variety is the best adapted to high temperatures and irradiation rates in the Comarca Lagunera region.
https://doi.org/10.5154/r.rchscfa.2018.12.089
PDF

References

Bonhomme, R. (1993). The solar radiation: characterization and distribution in the canopy. In C. Varlet-Grancher, R. Bonhomme, & H. Sinoquet (Eds.), Crop structure and light microclimate: Characterization and applications (pp. 17–28). France: INRA Editions. doi: https://doi.org/10.1002/qj.49712052020

Briceño, E. A., Valenzuela, L. M., Espino, D. A., García, C., Esparza, J. R., & Borja, A. (2018). Content of starch in walnut organs (Carya illinoensis Koch) in two phenological stages. Revista Mexicana de Ciencias Agrícolas, 1(20), 1–20. doi: https://doi.org/10.29312/remexca.v0i20.987

Can, H., & Aksoy, U. (2007). Seasonal and diurnal photosynthetic behaviour of fig (Ficus carica L.) under semi-arid climatic conditions. Acta Agriculturae Scandinavica, Section B - Soil & Plant Science, 57(4), 297–306. doi: https://doi.org/10.1080/09064710600982753

Caruso, E., Tambelli, P., Lázaro, C., & Vasconcelos, R. (2005). Respostas da fotossíntese de três espécies de citros a fatores ambientales. Pesquisa Agropecuária Brasileira, 40(12), 1161–1170. doi: https://doi.org/10.1590/S0100-204X2005001200002

Chávez, E., González, J. L., Valenzuela, L., Potisek, C., & González, G. (2009). Morfología, índice y densidad estomática en plántulas de nogal pecanero cultivadas bajo tres niveles de radiación solar. Agrofaz, 9(3), 85–90. Retrieved from http://www.agrofaz.mx/r/Doc/DOCUMENTOFINAL9-3.pdf

Coder, K. D. (2016). Heat damage in trees. Retrieved from https://www.warnell.uga.edu/sites/default/files/publications/WSFNR-16-29%20Coder.pdf

De Herralde, F., Biel, C., & Savé, R. (2003). Leaf photosynthesis in eight almond tree cultivars. Biologia Plantarum, 46(4), 557–561. doi: https://doi.org/10.1023/A:1024867612478

Ebell, L. F. (1969). Specific total starch determinations in conifer tissues with glucose oxidase. Phytochemistry, 8, 25–36. doi: https://doi.org/10.1016/S0031-9422(00)85790-8

Gardea, A., Martínez, M., & Yahia, E. (2011). Pecan (Carya illinoiensis (Wangenh.) K. Koch). In E. M. Yahia (Ed.), Postharvest biology and technology of tropical and subtropical fruits (1st ed., pp. 143–165). USA: Woodhead Publishing Limited.

Gariglio, N., Dovis, V., Leva, P., García, M., & Bouzo, C. (2006). Acumulación de horas de frío en la zona centro-oeste de Santa Fe (Argentina) para frutales caducifolios. Horticultura Argentina, 25(28), 26–32.

Gómez, G., Arreola, J., Trejo, R., & Flores, A. (2006). Efecto de niveles de radiación fotosintética sobre la producción de biomasa en arboles de nogal pecanero [Carya illinoinensis (Wangenh) K . Koch]. Revista Chapingo Serie Zonas Áridas, 5(2), 179–184. Retrieved from https://chapingo.mx/revistas/zonas_aridas/contenido.php?id_articulo=976&doi=0000&id_revista=8

Grageda, J., Ruiz, J., Jiménez, A., & Fu, A. (2014). Climate change influence on the development of pests and diseases of crops in Sonora. Revista Mexicana de Ciencias Agrícolas, 10, 1913–1921. doi: https://doi.org/10.29312/remexca.v0i10.1026

Haissig, B., & Dickson, R. (1982). Glucose measurement errors in enzymatic starch hydrolysates at high enzyme-glucose weight ratios. Physiologia Plantarum, 54(3), 244–248. doi: https://doi.org/10.1111/j.1399-3054.1982.tb00254.x

Higgins, S. S., Larsen, F. E., Bendel, R. B., Radamaker, G. K., Bassman, J. H., Bidlake, W. R., & Al Wir, A. (1992). Comparative gas exchange characteristics of potted, glasshouse-grown almond, apple, fig, grape, olive, peach and asian pear. Scientia Horticulturae, 52(4), 313–329. doi: https://doi.org/10.1016/0304-4238(92)90032-8

Higuchi, H. Sakuratani, T., & Utsunomiya, N. (1999). Photosynthesis, leaf morphology, and shoot growth as affected by temperatures in cherimoya (Annona cherimola Mill.) trees. Scientia Horticulturae, 80(1-2), 91–104. doi: https://doi.org/10.1016/S0304-4238(98)00221-0

Instituto Mexicano de Tecnología del Agua (IMTA). (2005). Extractor rápido de información climatológica versión 2.0. (ERIC 2.0). Software. México: Secretaría del Medio Ambiente y Recursos Naturales.

Instituto Nacional de Estadística y Geografía (INEGI). (2012). Anuario estadístico del estado de Coahuila de Zaragoza. Aguascalientes, México: Autor.

Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP). (2017). Históricos temperatura (°C) 2013 a 2017. Campo Experimental La Laguna de Coahuila. Retrieved from http://clima.inifap.gob.mx/lnmysr/Historicos/Datos?Estado=5&Estacion=26812&Anio=2017&Mes=2

Instituto Nacional de Innovación Agraria (INIA). (2004). El cultivo del pecano (Carya illinoensis). Retrieved from http://www.agrolalibertad.gob.pe/sites/default/files/EL%20CULTIVO%20DEL%20PECANO.pdf

Kozlowski, T. T., Kramer, P. J., & Pallardy, S. G. (1991). The physiological ecology of woody plants. San Diego, California, USA: Academic Press, Inc.

Lombardini, L., Restrepo, H., & Volder, A. (2009). Photosynthetic light response and epidermal characteristics of sun and shade pecan leaves. Journal of the American Society for Horticultural Science, 134(3), 372–378. Retrieved from http://journal.ashspublications.org/content/134/3/372.full.pdf

Medina, M. C., & Cano, P. (2002). Aspectos generales del nogal pecanero. En H. Salinas, H. M., Quiroga, A., Tijerina, & U. Figueroa (Eds.), Tecnología de producción en nogal pecanero (1.a ed., pp. 1–14). México: Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias

Muncharaz, M. (2012). Origen y descripción botánica de la especie (Carya illinoensis Koch). In M. Muncharaz-Pou (Ed.), El nogal: técnicas de producción de fruto y madera (pp. 15–27). México: Mundi-Prensa

Orona, I., Sangerman, D., Fortis, M., Vázquez, C., & Gallegos, M. (2013). Production and marketing of pecan nuts (Carya illinoensis Koch) in northern Coahuila, Mexico. Revista Mexicana de Ciencias Agrícolas, 4(3), 461–476. doi: https://doi.org/10.29312/remexca.v4i3.1207

Potisek, C., González, G., Chávez, E., & González, J. (2009). La radiación solar y fertilización nitrogenada en el desarrollo de plántulas de nogal. Agrofaz, 9(3), 31–37. Retrieved from http://www.agrofaz.mx/r/Doc/DOCUMENTOFINAL9-3.pdf

Restrepo-Díaz, H., Melgar, J. C., & Lombardini, L. (2010). Ecophysiology of horticultural crops: an overview. Agronomía Colombiana, 28(1), 71–79. Retrieved from http://www.scielo.org.co/pdf/agc/v28n1/v28n1a09.pdf

Rivetti, R. A. (2006). Producción de maíz bajo diferentes regímenes de riego complementario en Río Cuarto, Córdoba, Argentina. II. Producción de materia seca. Revista de la Facultad de Ciencias Agrarias, 38(2), 25–36. Retrieved from http://revista.fca.uncu.edu.ar/images/stories/pdfs/2007-01/39_01_04.pdf

Sage, R., & Kubien, D. (2007). The temperature response of C3 and C4 photosynthesis. Plant, Cell and Environment, 30(9), 1086–1106. doi: https://doi.org/10.1111/j.1365-3040.2007.01682.x

SPSS Inc. Released (2009). PASW Statistics for Windows, version 18.0. Chicago, USA: Author.

Taiz, L., & Zeiger, E. (2002). Plant physiology (3rd ed.). Sunderland, MA, USA: Sinauer Associates Inc.

Taiz, L., & Zeiger, E. (2006). Plant physiology (4th ed.). Sunderland, MA, USA: Sinauer Associates Inc.

United States Department of Agriculture–Natural Resources Conservation Service (USDA-NRCS). (2016). Pecan (Carya illinoinensis (Wangenh) K. Koch). Retrieved February 6, 2017 from http://plants.usda.gov/classification.html

Valenzuela, L. M., Gérant, D., Maillard, P., Bréda, N., González, G., & Sánchez, I. (2011). Evidence for a 26kDA vegetative storage protein in the stem sapwood of mature pedunculate oak. Interciencia, 36(2), 142–147. https://www.interciencia.net/wp-content/uploads/2018/01/142-c-VALENZUELA-6.pdf

Vasconcelos-Ribeiro, R., Caruso-Machado, E., Espinoza-Núñez, E., Augusto-Ramos, R., & São Pedro-Machado, D. F. (2012). Moderate warm temperature improves shoot growth, affects carbohydrate status and stimulates photosynthesis of sweet orange plants. Brazilian Society of Plant Physiology, 24(1), 37–46. doi: https://doi.org/10.1590/S1677-04202012000100006

Wang, F. L., Wang, H., & Wang, G. (2007). Photosynthetic responses of apricot (Prunus armeniaca L.) to photosynthetic photon flux density, leaf temperature, and CO2 concentration. Photosynthetica, 45(1), 59–64. doi: https://doi.org/10.1007/s11099-007-0009-1

Yamada, M., Fukumachi, H., & Hidaka, T. (1996). Photosynthesis in longan and mango as influenced by high temperatures under high irradiance. Journal of the Japanese Society for Horticultural Science, 64(4), 749–756. doi: https://doi.org/10.2503/jjshs.64.749

Yepes, A., & Silveira, M. (2011). Plant responses to meteorological events related to climate change – review. Colombia Forestal, 14(2), 213–232. doi: https://doi.org/10.14483/issn.2256-201X

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2019 Revista Chapingo Serie Ciencias Forestales y del Ambiente