Revista Chapingo Serie Ciencias Forestales y del Ambiente
Historical and current spatial modeling of the sacred fir (Abies religiosa [Kunth] Schltdl. & Cham.) in the Trans-Mexican Volcanic Belt
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF

Keywords

Ecological niche
environmental variables
fir
Middle Holocene
potential distribution

How to Cite

Manzanilla-Quiñones, U., Martínez-Adriano, C. A., & Aguirre-Calderón, O. A. (2019). Historical and current spatial modeling of the sacred fir (Abies religiosa [Kunth] Schltdl. & Cham.) in the Trans-Mexican Volcanic Belt. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 25(2), 201–217. https://doi.org/10.5154/r.rchscfa.2018.10.076

##article.highlights##

  • Elevation, precipitation and temperature have been the limiting factors in the distribution of the sacred fir.
  • Annual precipitation was 80 to 224 mm higher than today's level and the temperature was 1 °C colder.
  • The estimated sacred fir areas were similar in the current and middle Holocene periods.
  • The sacred fir's ecological niche has remained stable for 6,000 years.

Abstract

Introduction: Climatic conditions in the Trans-Mexican Volcanic Belt during the middle Holocene were different from today's conditions, which may have an effect on the historical distribution areas of the sacred fir (Abies religiosa [Kunth] Schltdl. & Cham.).  Objective: To determine whether the environmental requirements that delimit the current distribution of the sacred fir in the Trans-Mexican Volcanic Belt have changed since 6,000 years ago. Materials and methods: A. religiosa records were obtained from the Niche Toolbox platform. The WorldClim version 2.0 variables for the current (1970-2000) and middle Holocene (CNRMCM5 and MIROC_ESM models) periods were downloaded. The distribution models were generated in MaxEnt using 75 % of the data for training and 25 % for validation. The most important variables of each period were determined with the Jackknife test.  Results and discussion: The estimated sacred fir areas were similar in both periods. Approximately 86.5 % of the sacred fir distribution is found in protected natural areas of the zone. The limiting environmental variables of its distribution are: elevation, annual precipitation, summer precipitation, annual mean temperature and diurnal temperature oscillation. Nevado de Toluca and Mexico City had larger sacred fir areas (+2 658.4 ha and +20 129.7 ha, respectively) during the Middle Holocene. Annual precipitation was 80 to 224 mm higher than the current level and the temperature was 1 °C colder. Conclusion: The most important environmental variables for sacred fir distribution are similar to those reported in the literature, indicating similarity between the current and historical ecological niche of A. religiosa.
https://doi.org/10.5154/r.rchscfa.2018.10.076
PDF

References

Caballero, M., Lozano-García, S., Vázquez-Selem, L., & Ortega, B. (2010). Evidencias de cambio climático y ambiental en registros glaciales y en cuencas lacustres del centro de México durante el último máximo glacial. Boletín de la Sociedad Geológica Méxicana, 62(3), 359–377. Retrieved from http://www.redalyc.org/articulo.oa?id=94319371005

Calderón de Rzedowski, G., & Rzedowski, J. (2001). Flora fanerogámica del Valle de México (2.ª ed.). Michoacán, México: Instituto de Ecología A. C. & Comisión Nacional para el Conocimiento y Uso de la Biodiversidad.

Cerano-Paredes, J., Villanueva-Díaz, J., Cervantes-Martínez, R., Vázquez-Selem, L., Trucios-Caciano, R., & Guerra de la Cruz, V. (2014). Reconstrucción de precipitación invierno-primavera para el Parque Nacional Pico de Tancítaro, Michoacán. Boletín Investigaciones Geográficas, 83, 42–55. doi: https://doi.org/10.14350/rig.35190

Coitiño, H. I., Montenegro, F., Fallabrino, A., González, E. M., & Hernández, D. (2013). Distribución actual y potencial de Cabassous tatouay y Tamandua tetradactyla en el límite sur de su distribución: implicancias para su conservación en Uruguay. Edentata, 14(1), 23–34. doi: https://doi.org/10.5537/020.014.0104

Comisión Nacional de Áreas Naturales Protegidas (CONANP). (2017). Áreas Naturales Protegidas Federales de México. Archivo vectorial shapefile. Retrieved November 11, 2017 from http://www.conabio.gob.mx/informacion/metadata/gis/anpmay17gw.xml?_httpcache=yes&_xsl=/db/metadata/xsl/fgdc_html.xsl&_indent=no

Coupled Model Intercomparison Project Phase 5 (CMIP5). (2013). Retrieved January 15, 2017 from http://www.worldclim.org/paleo-climate1

Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E., & Yates, C. J. (2011). A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17(1), 43–57. doi: https://doi.org/10.1111/j.1472-4642.2010.00725.x

Environmental Systems Research Institute (ESRI). (2014). ArcGIS desktop, version 10.3. Redlands, California, Virginia, USA: Author.

Farjon, A., & Filer, D (2013). An atlas of the world´s conifers: An analysis of their distribution, biogeography, diversity, and conservation status. Netherlands: Brill Academic Publishers.

Ferrusquía-Villafranca, I. (1998). Geología de México: una sinopsis. In T. P. Ramamoorthy, R. Bye, A. Lot, & J. Fa. (Eds.), Diversidad biológica de México (pp. 3–108). México: Universidad Nacional Autónoma de México.

Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4317. doi: https://doi.org/10.1002/joc.5086

García, E. (1998). Modificaciones al sistema de clasificación climática de Köppen (para adaptarlo a las condiciones de la República Mexicana). México: Instituto de Geografía, Universidad Nacional Autónoma de México.

Garza-López, M., Ortega-Rodríguez, J. M., Zamudio-Sánchez, F. J., López-Toledo, J. F., Domínguez-Álvarez, F. A., & Sáenz-Romero, C. (2016). Calakmul como refugio de Swietenia macrophylla King ante el cambio climático. Botanical Sciences, 94(1), 43–50. doi: https://doi.org/10.17129/botsci.500

Gutiérrez, E., & Trejo, I. (2014). Efecto del cambio climático en la distribución potencial de cinco especies arbóreas de bosque templado en México. Revista Mexicana de Biodiversidad, 85(1), 179–188. doi: https://doi.org/10.7550/rmb.37737

Huante, P., Rincón, E., & Swetnam, T. W. (1991). Dendrochronology of Abies religiosa in Michoacan, Mexico. Tree-Ring Bulletin, 51, 15–28. Retrieved from https://www.researchgate.net/publication/228116883_Dendrochronology_of_Abies_religiosa_in_Michoacan_Mexico

Instituto Nacional de Estadística y Geografía (INEGI). (2001). Conjunto de datos vectoriales fisiográficos. Continuo Nacional. Escala 1:1 000 000. Serie I. Subprovincias Fisiográficas de México. Archivo vectorial shapefile. Retrieved November 11, 2017 from http://www.beta.inegi.org.mx/temas/mapas/fisiografia/

Instituto Nacional de Estadística y Geografía (INEGI). (2014). Conjunto de datos vectoriales edafológicos. Continuo Nacional. Escala 1: 250 000. Serie II. Archivo vectorial shapefile. Retrieved November 11, 2017 from http://www.conabio.gob.mx/informacion/metadata/gis/eda250s2gw.xml?_httpcache=yes&_xsl=/db/metadata/xsl/fgdc_html.xsl&_indent=no

Instituto Nacional de Estadística y Geografía (INEGI). (2018). Continuo de Elevaciones Mexicano. Archivo ráster. Retrieved September 8, 2018 from http://www.beta.inegi.org.mx/app/geo2/elevacionesmex/index.jsp

Lobo, J. M., Jiménez, V. A., & Real, R. (2008). AUC: A misleading measure of the performance of predictive distribution models. Global Ecology and Biogeography, 17(2), 145–151. doi: https://doi.org/10.1111/j.1466-8238.2007.00358.x

Lozano-García, M. S., & Vázquez-Selem, L. (2005). A high-elevation Holocene pollen record from Iztaccihuatl volcano, central Mexico. The Holocene, 15(3), 329–338. doi: https://doi.org/10.1191/0959683605hl814rp

Madrigal, S. X. (1967). Contribución al conocimiento de la ecología de los bosques de oyamel (Abies religiosa (HBK) Schl. & Cham.) en el Valle de México. México: Instituto Nacional de Investigaciones Forestales.

Manzanilla, Q. U., Delgado, V. P., Hernández, R. J., Molina, S. A., García, M. J. J., & Rocha, G. M. del C. (2019). Similaridad del nicho ecológico de Pinus montezumae y P. pseudostrobus (Pinaceae) en México: implicaciones para la selección de áreas productoras de semillas y de conservación. Acta Botánica Mexicana, 126, e1398. doi: https://doi.org/10.21829/abm126.2019.1398

Martínez-Méndez, N., Aguirre-Planter, E., Eguiarte, E. L., & Jaramillo-Correa, J. P. (2016). Modelado de nicho ecológico de las especies del género Abies (Pinaceae) en México: algunas implicaciones taxonómicas y para la conservación. Botanical Sciences, 94(1), 5–24. doi: https://doi.org/10.17129/botsci.508

Monterrubio-Rico, T. C., Charre-Medellín, J. F., Pacheco-Figueroa, C., Arriaga-Weiss, S., Valdez-Leal, J. D., Cancino-Murillo, R., …Rubio-Rocha, A. (2016). Distribución potencial histórica y contemporánea de la familia Psittacidae en México. Revista Mexicana de Biodiversidad, 87(3), 1103–1117. doi: https://doi.org/10.1016/j.rmb.2016.06.004

Moreno-Letelier, A., Ortíz-Medrano, A., & Pinero, D. (2013). Niche divergence versus neutral processes: Combined environmental and genetic analyses identify contrasting patterns of differentiation in recently diverged pine species. PLoS ONE, 8(10), e78228. doi: https://doi.org/10.1371/journal.pone.0078228

Morrone, J. J., & Escalante, T. (2016). Introducción a la biogeografía (1.a ed.). México: Universidad Nacional Autónoma de México.

Narayani, B. (2008). Tool for Partial ROC version 1.0. Lawrence, KS, USA: University of Kansas-CONABIO. Retrieved January 7, 2018 from http://nicho.conabio.gob.mx/home/proposito-y-guia-del-usuario/validacion-del-modelo

Nieto de Pascual-Pola, M. C. (1995). Estudio sinecológico del bosque de oyamel de la cañada de Contreras, Distrito Federal. Revista Ciencia Forestal en México, 20, 3–34.

Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO). (2010). Evaluación de los recursos forestales mundiales 2010: Informe nacional, México. Roma, Italia: Author. Retrieved from https://www.researchgate.net/publication/263274117_Evaluacion_De_Los_Recursos_Forestales_Mundiales_2010_Informe_Nacional_Mexico

Osorio-Olvera, L., Vijay, B., Narayani, B., Soberón, J., & Falconi, M. (2017). Ntbox: From getting biodiversity data to evaluating species distributions models in a friendly GUI environment. R package version 0.2.5.4. Retrieved January 15, 2017 from https://github.com/luismurao/ntbox

Peterson, A. T. (2011a). Paleoclimates: Understanding climate change past and present. Quarterly Review of Biology, 86(4), 342–343. doi: https://doi.org/10.1086/662496

Peterson, A. T. (2011b). Ecological niche conservatism: a time-structured review of evidence. Journal of Biogeography, 38(5), 817–827. doi: https://doi.org/10.1111/j.1365-2699,2010.02456.x

Peterson, A. T., & Nakazawa, Y. (2008). Environmental data sets matter in ecological niche modelling: an example with Solenopsis invicta and Solenopsis richteri. Global Ecology and Biogeography, 17(1), 135–144. doi: https://doi.org/10.1111/j.1466-8238.2007.00347.x

Peterson, A. T., Papes, M., & Soberón, J. (2008). Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecological Modelling, 213(1), 63–72. doi: https://doi.org/10.1016/j.ecolmodel.2007.11.008

Peterson, A. T., Soberón, J., Pearson, R. G., Anderson, R. P., Martinez- Meyer, E., Nakamura M., & Araujo, M. B. (2011). Ecological niches and geographic distributions. USA: Princeton University Press.

Phillips, S. J., Anderson, R. P., & Schaphire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3-4), 231–259. doi: https://doi.org/10.1016/j.ecolmodel.2005.03.026

Protectora de Bosques (PROBOSQUE). (2007). Manual de producción de planta forestal. Clima templado frío. Retrieved from http://www.earthgonomic.com/biblioteca/2007_SEDAGRO_Manual_de_Produccion_Forestal.pdf

Ramírez-Barahona, S., & Eguiarte, F. L. E. (2013). The role of glacial cycles in promoting genetic diversity in the Neotropics. The case of cloud forests during the Last Glacial Maximum. Ecology and Evolution, 3(3), 725–738. doi: https://doi.org/10.1002/ece3.483

Rzedowski, J. (2006). Vegetación de México (1.a ed. digital). México: Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO).

Sáenz-Romero, C., Rehfeldt, G. E., Duval, P., & Lindig-Cisneros R. A. (2012). Abies religiosa habitat prediction in climatic change scenarios and implications for monarch butterfly conservation in Mexico. Forest Ecology and Management, 275, 98–106. doi: https://doi.org/10.1016/j.foreco.2012.03.004

Sáenz-Romero, C., Rehfeldt, G. E., Ortega-Rodríguez, J. M., Marín-Togo, M. C., & Madrigal-Sánchez, X. (2015). Pinus leiophylla suitable habitat for 1961-1990 and future climate. Botanical Sciences, 93(4), 709–718. doi: https://doi.org/10.17129/botsci.86

Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT). (2007). Anuario estadístico de la producción forestal. México: Autor. Retrieved from https://www.gob.mx/cms/uploads/attachment/file/282952/2007.pdf

Soberón, J., & Peterson, A. T. (2005). Interpretation of models of fundamental ecological niches and species distribution areas. Biodiversity Information, 2, 1–10. doi: https://doi.org/10.17161/bi.v2i0.4

Svensson, A., Andersen, K. K., Bigler, M., Clausen, H. B., Dahl-Jensen, D., Davies, S. M., …Vinter, B. M. (2008). A 60 000 year Greenland stratigraphic ice core chronology. Climate of the Past, 4, 47–57. doi: https://doi.org/10.5194/cp-4-47-2008

Xiang, Q. P., Wei, R., Shao, Z. Y., Wang, X. Q., & Zhang, X. C. (2015). Phylogenetic relationships, possible ancient hybridization and biogeography history of Abies (Pinaceae) based on data from nuclear, plastid and mitochondrial genomes. Molecular Phylogenetics and Evolution, 82(A), 1–14. doi: https://doi.org/10.1016/j.ympev.2014.10.008

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2019 Revista Chapingo Serie Ciencias Forestales y del Ambiente