Revista Chapingo Serie Ciencias Forestales y del Ambiente
Soil carbon and nitrogen in tropical montane cloud forest, agroforestry and coffee monoculture systems
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF

Keywords

Plant cover
nitrates
ammonium
organic nitrogen
C:N ratio

How to Cite

Cristóbal-Acevedo, D., Tinoco-Rueda, J. A., Prado-Hernández, J. V., & Hernández-Acosta, E. (2019). Soil carbon and nitrogen in tropical montane cloud forest, agroforestry and coffee monoculture systems. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 25(2), 169–184. https://doi.org/10.5154/r.rchscfa.2018.09.070

##article.highlights##

  • The tropical montane cloud forest (TMCF) had a greater magnitude of plant cover.
  • The TMCF and the coffee agroforestry system as a traditional polyculture had greater C and N content.
  • Agroforestry systems with coffee stored more C and N than coffee monoculture.
  • The C:N ratio in the soil was similar in the systems.

Abstract

Introduction: In natural systems and agroecosystems, the study of soil carbon and nitrogen as a function of the type and magnitude of their plant cover is important because the concentration and content of these elements are related to soil fertility and quality and environmental impact. Objectives: To determine the carbon and nitrogen in the soil as a function of the type and magnitude of the plant cover of tropical montane cloud forest (TMCF) systems, full sun coffee monoculture (FSCM), coffee agroforestry system as a traditional polyculture (CASTP) and coffee agroforestry system as a commercial polyculture (CASCP). Materials and methods: Plant covers were characterized and quantified. Soil samples were taken at depths of 0 to 10, 10 to 20 and 20 to 30 cm to determine the concentrations and contents of soil organic carbon (SOC) and nitrogen in its total (Nt), organic (Norg), nitrate (NO3-), ammonium (NH4+) and mineral (Nmin) forms. Results and discussion: The order of magnitude of plant cover was TMCF>CASTP>CASCP>FSCM. The same order was found in SOC (TMCF: 229.33 Mg·ha-1, CASTP: 211.03 Mg·ha-1, CASCP: 90.95 Mg·ha-1 and FSCM: 92.56 Mg·ha-1), Nt (TMCF: 16.10 Mg·ha-1, CASTP:14.21 Mg·ha-1, CASCP: 7.89 Mg·ha-1 and FSCM: 6.50 Mg·ha-1) and Norg (TMCF: 16.02 Mg·ha-1, CASTP:14.16 Mg·ha-1, CASCP: 7.82 Mg·ha-1 and FSCM: 6.44 Mg·ha-1) stocks. The C:N ratio was similar in the systems. Conclusions: The TMCF and CASTP had the largest organic carbon and Nt stocks in the soil. Agroforestry systems with coffee were better than coffee monoculture.
https://doi.org/10.5154/r.rchscfa.2018.09.070
PDF

References

Aranguren, J., Escalante, G., & Herrera, R. (1982). Nitrogen cycle of tropical perennial crops under shade trees. Plant and Soil, 67(1-3), 247–258. doi: https://doi.org/10.1007/BF02182772

Bremner, J. M. (1965). Inorganic forms. In C. A. Black (Ed.). Methods of soil analysis (part 2) (pp.1179–1237). USA: American Society of Agronomy, Inc., Soil Science Society of America, Inc.

Brevik, E. C., (2009). Soil health and productivity. In H. Verheye (Ed.), Soils, plant growth and crop production (pp. 106–137). Oxford, UK: EOLSS Publishers.

Callo-Concha, D., Krishnamurthy, L., & Alegre, J. (2002). Secuestro de carbono por sistemas agroforestales amazónicos. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 8(2), 101–106. Retrieved from https://www.chapingo.mx/revistas/revistas/articulos/doc/rchscfaVIII374.pdf

Cerri, C. E. P., Feigl, B., & Cerri, C. C. (2008). Dinâmica da materia orgânica do solo na Amazônia. In G. A. Santos, L. S. Silva, L. P. Canellas, & F. O. Camargo (Eds.), Fundamentos da matéria orgânica do solo: Ecossistemas tropicais e subtropicais (pp. 325–358). Porto Alegre, Brasil: Gênesis.

Conant, R. T., Paustian, K., Del Grosso, S. J., & Parton, W. J. (2005). Nitrogen pools and fluxes in grassland soils sequestering carbon. Nutrient Cycling in Agroecosystems, 71(3), 239–248. doi: https://doi.org/10.1007/s10705-004-5085-z

Corral-Fernández, R., Parras-Alcántara, L., & Lozano-García, B. (2013). Stratification ratio of soil organic C, N and C:N in Mediterranean evergreen oak woodland with conventional and organic tillage. Agriculture, Ecosystems and Environment, 164, 252–259. doi: https://doi.org/10.1016/j.agee.2012.11.002

Damacena de Souza, E., Gigante de Andrade, C. S. E. V., Anghinoni, I., de Faccio, C. P. C., Andrigueti, M., & Cao, E. (2009). Estoques de carbono orgânico e de nitrogênio no solo em sistema de integração lavoura-pecuária em plantio direto, submetido a intensidades de pastejo. Revista Brasileira de Ciência do Solo, 33(6), 1829–1836. doi: https://doi.org/10.1590/S0100-06832009000600031

Delgado, S., Alliaume, F., García, P. F., & Hernández, J. (2006). Efecto de las plantaciones de Eucalyptus sp. sobre el recurso suelo en Uruguay. Agrociencia, 10(2), 95–107. Retrieved from https://www.researchgate.net/publication/285483008_Efecto_de_las_plantaciones_de_Eucalyptus_sp_sobre_el_recurso_suelo_en_Uruguay

de Souza, N. R., Alves de Castro, L. A., Gomes de Sousa, D. M., & de Carvalho, M. I. (2011). Sistemas de manejo e os estoques de carbono e nitrogênio em latossolo de cerrado com a sucessão soja-milho. Revista Brasileira de Ciência do Solo, 35(4), 1407–1419. Retrieved from http://www.scielo.br/pdf/rbcs/v35n4/a35v35n4.pdf

Ellert, B. H., & Bettany, J. R. (1995). Calculation of organic matter and nutrients stored in soils under contrasting management regimes. Canadian Journal of Soil Science, 75(4), 529–538. doi: https://doi.org/10.4141/cjss95-075

Elliott, E. M., Kendall, C., Boyer, E. W., Burns, D. A., Lear, G. G., Golden, H. E., ...Glatz, R. (2009). Dual nitrate isotopes in dry deposition: Utility for partitioning NOx source contributions to landscape nitrogen deposition. Journal of Geophysical Research: Biogeosciences, 114(G4). doi: https://doi.org/10.1029/2008JG000889

Espinoza-Domínguez, W., Krishnamurthy, L., Vázquez-Alarcón, A., & Torres-Rivera, A. (2012). Almacén de carbono en sistemas agroforestales con café. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 18(1), 57–70. doi: https://doi.org/10.5154/r.rchscfa.2011.04.030

Ewing, S. A., Southard, R. J., Macalady, J. L., Hartshorn, A. S., & Johnson, M. J. (2007). Soil microbial fingerprints, carbon, and nitrogen in a Mojave Desert creosote-bush ecosystem. Soil Science Society of America Journal, 71(2), 469–475. doi: https://doi.org/10.2136/sssaj2005.0283

Fu, X., Shao, M., Wei, X., & Horton, R. (2010). Soil organic carbon and total nitrogen as affected by vegetation types in Northern Loess Plateau of China. Geoderma, 155(1), 31–35. doi: https://doi.org/10.1016/j.geoderma.2009.11.020

Gallo, M. E., Porras-Alfaro, A., Odenbach, K. J., & Sinsabaugh R. L. (2009). Photo-acceleration of plant litter decomposition in an arid environment. Soil Biology and Biochemistry, 41(7), 1433–1441. doi: https://doi.org/10.1016/j.soilbio.2009.03.025

García, E. (1988). Modificaciones al sistema de clasificación climática de Köppen (Para adaptarlo a las condiciones de la República Mexicana). México: UNAM.

Gelaw, A. M., Singh, B. R., & Lal, R. (2014). Soil organic carbon and total nitrogen stocks under different land uses in a semi-arid watershed in Tigray, Northern Ethiopia. Agriculture, Ecosystems & Environment, 188, 256–263. doi: https://doi.org/10.1016/j.agee.2014.02.035

Grupo Intergubernamental de Expertos sobre el Cambio Climático (IPCC). (2007). Cambio climático 2007: informe de síntesis. Suiza: Cambridge University Press.

Heluf, G., & Negassa, W. (2006). Impact of land use and management practices on chemical properties of some soils of Bako area, western Ethiopia. Ethiopian Journal of Natural Resources, 8(2), 177–197. Retrieved from http://agris.fao.org/agris-search/search.do?recordID=ET2009000215

Hoogmoed, M., Cunningham, S. C., Thomson, J. R., Baker, P. J., Beringer, J., & Cavagnaro, T. R. (2012). Does afforestation of pastures increase sequestration of soil carbon in Mediterranean climates? Agriculture, Ecosystems & Environment, 159, 176–183. doi: https://doi.org/10.1016/j.agee.2012.07.011

Kassam, A., Friedrich, T., Derpsch, R., Lahmar, R., Mrabet, R., Basch, G., ... Serraj, R. (2012). Conservation agriculture in the dry Mediterranean climate. Field Crops Research, 132, 7–17. doi: https://doi.org/10.1016/j.fcr.2012.02.023

Maia, S. M. F., Xavier, F. A. S., Oliveira, T. S., Mendonça, E. S., & Filho, A. J. A. (2008). Frações de nitrogênio em Luvissolo sob sistemas agroflorestais e convencional no semiárido cearense. Revista Brasileira de Ciência do Solo, 32(1), 381–392. doi: https://doi.org/10.1590/S0100-06832008000100036

Malavolta, E. (2006). Manual de nutrição mineral de plantas. São Paulo, Brasil: Agronômica Ceres.

Nair, P. R. (2011). Methodological challenges in estimating carbon sequestration potential of agroforestry systems. In B. M. Kumar & P. K. R. Nair (Eds.), Carbon sequestration potential of agroforestry systems opportunities and challenges (pp. 3–16). Netherlands: Springer. doi: https://doi.org/10.1007/978-94-007-1630-8_1

Novara, A., La Mantia, T., Barbera, V., & Gristina, L. (2012). Paired-site approach for studying soil organic carbon dynamics in a Mediterranean semiarid environment. Catena, 89(1), 1–7. doi: https://doi.org/10.1016/j.catena.2011.09.008

Bortolon, O. E. S., Mielniczuk, J., Tornquist, C. G., Lopes, F., & Fernandes, F. F. (2009). Simulação da dinâmica do carbono e nitrogênio em um Argissolo do Rio Grande do Sul usando modelo Century. Revista Brasileira de Ciência do Solo, 33(6), 1635–1646. doi: https://doi.org/10.1590/S0100-06832009000600012

Paul, K. I., Polglase, P. J., Nyakuengama, J. G., & Khanna, P. K. (2002). Change in soil carbon following afforestation. Forest Ecology and Management, 168(1), 241–257. doi: https://doi.org/10.1016/S0378-1127(01)00740-X

Parfitt, R., Yeates, G., Ross, D., Mackay, A., & Budding, P. (2005). Relationships between soil biota, nitrogen availability, plant nitrogen and pasture growth under organic and conventional management. Applied Soil Ecology, 28(1), 1–13. doi: https://doi.org/10.1016/j.apsoil.2004.07.001

Pérez, J. R. (2004). Colecciones ex situ de la Universidad Autónoma Chapingo en Huatusco, Ver. México: UACh

Powers, J. S. (2004). Changes in soil carbon and nitrogen after contrasting land-use transitions in northeastern Costa Rica. Ecosystems, 7(2), 134–146. doi: https://doi.org/10.1007/s10021-003-0123-2

Sadeghian, S., Mejía, B., & Arcila, J. (2007). Composición elemental de frutos de café y extracción de nutrientes por la cosecha en la zona cafetera de Colombia. Cenicafé, 57(4), 251–261. Retrieved from http://biblioteca.cenicafe.org/bitstream/10778/117/1/arc057(04)251-261.pdf

Sainju, U. M., Lenssen, A. W., Caesar-TonThat, T., Jabro, J. D., Lartey, R. T., Evans, R. G., & Allen, B. L. (2011). Dryland residue and soil organic matter as influenced by tillage, crop rotation, and cultural practice. Plant and Soil, 338(1-2), 27–41. doi: https://doi.org/10.1007/s11104-010-0403-5

Sánchez-Junco, R. C., Damián-Hernández, D. L., Cerón-Bretón, R. M., Cerón-Bretón, J. G., Guerra-Santos, J. J., Rangel-Marrón, M., & Zavala-Loría, J. C. (2011) Determinación del carbono almacenado en suelo con asociación de mangle rojo en Nuevo Campechito, Campeche. Unacar Tecnociencia, 5(1), 1–7. Retrieved from http://www.unacar.mx/contenido/tecnociencia/tecnociencia_enero_junio11/tema_1_determinacion_del_carbono.pdf

SAS Institute Inc. (2013). The SAS system for Windows. Release 9.4. Cary, NC, USA: Author.

Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT). (2002). Norma Oficial Mexicana NOM-021-RECNAT-2000 que establece las especificaciones de fertilidad, salinidad y clasificación de suelos. Estudios, muestreo y análisis. México: Diario Oficial de la Federación. Retrieved from http://legismex.mty.itesm.mx/normas/rn/rn021-02.pdf

Segura, M., Kanninen, M., & Suárez, D. (2006). Allometric models for estimating aboveground biomass of shade trees and coffee bushes grown together. Agroforestry Systems, 68(2), 143–150. doi: https://doi.org/10.1007/s10457-006-9005-x

Smal, H., & Olszewska, M. (2008). The effect of afforestation with Scots pine (Pinus sylvestris L.) of sandy post-arable soils on their selected properties. II. Reaction, carbon, nitrogen and phosphorus. Plant and Soil, 305(1–2), 171–187. doi: https://doi.org/10.1007/s11104-008-9538-z

Veum, K. S., Goyne, K. W., Motavalli, P. P., & Udawatta, R. P. (2009). Runoff and dissolved organic carbon loss from a paired-watershed study of three adjacent agricultural watersheds. Agriculture, Ecosystems & Environment, 130(3), 115–122. doi: https://doi.org/10.1016/j.agee.2008.12.006

Wang, D., Wu, G. L., Zhu, Y. J., & Shi, Z. H. (2014). Grazing exclusion effects on above-and below-ground C and N pools of typical grassland on the Loess Plateau (China). Catena, 123, 113–120. doi: https://doi.org/10.1016/j.catena.2014.07.018

Watt, M. S., & Palmer, D. J. (2012). Use of regression kriging to develop a Carbon: Nitrogen ratio surface for New Zealand. Geoderma, 183, 49–57. doi: https://doi.org/10.1016/j.geoderma.2012.03.013

Yang, Y., Luo, Y., & Finzi, A. C. (2011). Carbon and nitrogen dynamics during forest stand development: A global synthesis. New Phytologist, 190(4), 977–989. doi: https://doi.org/10.1111/j.1469-8137.2011.03645.x

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2019 Revista Chapingo Serie Ciencias Forestales y del Ambiente