Revista Chapingo Serie Ciencias Forestales y del Ambiente
Water regime and gas exchange of Prosopis laevigata (Humb. & Bonpl. exWilld.) M. C. Johnst. in two semi-arid ecosystems in southern Sonora
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF

Keywords

water potential
osmotic potential
water-use efficiency
salinity
drought

How to Cite

Rodríguez-Sauceda, E. N. ., Argentel-Martínez, L., & Morales-Coronado, D. (2018). Water regime and gas exchange of Prosopis laevigata (Humb. & Bonpl. exWilld.) M. C. Johnst. in two semi-arid ecosystems in southern Sonora. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 25(1), 107–121. https://doi.org/10.5154/r.rchscfa.2018.09.068

##article.highlights##

  • The physiological response of mesquite varies significantly in salinity and drought conditions.
  • Salinity leads to a greater decrease in water and osmotic potentials in mesquite.
  • Photosynthesis does not vary with salinity and drought conditions, but transpiration does.
  • Mesquite has greater water-use efficiency in salinity than drought conditions.

Abstract

Introduction:  Among   the   adverse   conditions   of   forest   ecosystems,   salinity   anddrought   are   the   abiotic   factors   that   largely   modify   the   genetic   and   productiveexpression of species.
Objective: To evaluate the effect of salinity and drought on the water regime and gasexchange of mesquite (Prosopis laevigata [Humb. & Bonpl. ex Willd.] M. C. Johnst.)in two  semi-arid   sites,   Eco   Camping  and  Bahía   de   Lobos,  in  southern   Sonora,Mexico.
Materials and methods: The water and osmotic potentials were determined in theroot, stem and leaves of plants taken at random with similar morphological traits(height of 1.5 m  and stem diameter of 0.15 m measured at 1.3 m). In addition,photosynthesis, transpiration and water-use efficiency were evaluated.
Results and discussion: Water and osmotic potentials decreased significantly (P =0.0043); the osmotic potential was the lowest in the three organs measured, forminga potential gradient, an aspect that explains the maintenance of transpiration in bothconditions   (salinity   and   drought).   Photosynthesis   did   not   vary   significantly,   buttranspiration   did.   In   both   sites,   water-use   efficiency   exceeded   6  μmol   CO2/H2O;however, there was greater efficiency in the saline ecosystem due to the transpirationdecrease.
Conclusion:  Mesquite has the ability to tolerate the stressful conditions of salinityand drought in southern Sonora, showing less impact in water relations and gasexchange in the salinity condition.

https://doi.org/10.5154/r.rchscfa.2018.09.068
PDF

References

Asao, S., & Ryan, M. G. (2015). Carbohydrate regulation of photosynthesis and respiration from branch girdling in four species of wet tropical rain forest trees. Tree Physiology, 35(6), 608–620. doi: https://doi.org/10.1093/treephys/tpv025

Ayala‐Orozco, B., Gavito, M. E., Mora, F., Siddique, I., Balvanera, P., Jaramillo, V. J., ...Martínez‐Meyer, E. (2018). Resilience of soil properties to land‐use change in a tropical dry forest ecosystem. Land Degradation & Development, 29(2), 315–325. doi: https://doi.org/10.1002/ldr.2686

Azcón-Bieto, J., & Talón, M. (2008). Fundamentos de fisiología vegetal. España Universitat de Barcelona.

Barriga, A. M. T., Olguin, R. B., Almanza, J. L., Espinoza, L. C., & Coronado, M. A. G. (2018). Rehabilitación de un suelo salino con yeso agrícola en un cultivo de nogal en el Valle del Yaqui. Revista Terra Latinoamericana, 36(1), 85–90. doi: https://doi.org/10.28940/terra.v36i1.310

Blum, A. (2017). Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. Plant, Cell & Environment, 40(1), 4–10. doi: https://doi.org/10.1111/pce.12800

Bockheim, J. G., Gennadiyev, A. N., Hartemink, A. E., & Brevik, E. C. (2014). Soil-forming factors and Soil Taxonomy. Geoderma, 226, 231–237. doi: https://doi.org/10.1016/j.geoderma.2014.02.016

Boeri, P., Piñuel, L., Sharry, S. E., & Barrio, D. A. (2017). Caracterización nutricional de la harina integral de algarroba (Prosopis alpataco) de la norpatagonia Argentina. Revista de la Facultad de Agronomía, 116(1), 129–140. Retrieved from http://hdl.handle.net/10915/61879

Carmona, H. D., Trejo, C. R., Esquivel, A. O., Arreola, Á. J. G., & Flores, H. A. (2007). Evaluación de un método para medir fotosíntesis en mezquite (Prosopis glandulosa). Revista Chapingo Serie Zonas Áridas, 6(2), 185–190. Retrieved from https://www.chapingo.mx/revistas/revistas/articulos/doc/rchszaVI1005.pdf

Cary, K. L., & Pittermann, J. (2018). Small trees, big problems: Comparative leaf function under extreme edaphic stress. American Journal of Botany, 105(1), 50–59. doi: https://doi.org/10.1002/ajb2.1007

Cavazos, T., & Arriaga-Ramírez, S. (2012). Downscaled climate change scenarios for Baja California and the North American monsoon during the twenty-first century. Journal of Climate, 25, 5904–5915. doi: https://doi.org/10.1175/JCLI-D-11-00425.1

Chebbi, W., Boulet, G., Le Dantec, V., Chabaane, Z. L., Fanise, P., Mougenot, B., & Ayari, H. (2018). Analysis of evapotranspiration components of a rainfed olive orchard during three contrasting years in a semi-arid climate. Agricultural and Forest Meteorology, 256, 159–178. doi: https://doi.org/10.1016/j.agrformet.2018.02.020

Chhabra, R. (2017). Soil salinity and water quality. UK: Routledge.

Fisher, R. A. (1937). The design of experiments (2nd ed.). Edinburgh, London: Oliver and Boyd. Retrieved from http://krishikosh.egranth.ac.in/bitstream/1/2040342/1/TNV-65.pdf

Ford, J. D., Cameron, L., Rubis, J., Maillet, M., Nakashima, D., Willox, A. C., & Pearce, T. (2016). Including indigenous knowledge and experience in IPCC assessment reports. Nature Climate Change, 6, 349–353. doi: https://doi.org/10.1038/nclimate2954

Galindo-Soto, J. E., Vargas-Larreta, B., Hernández, F. J., & Cruz-Cobos, F. (2017). Modelo compatible altura dominante-índice de sitio para mezquite (Prosopis laevigata Humb. et Bonpl. ex Willd) del semidesierto de Durango. Revista Chapingo Serie Zonas Áridas, 16(1), 23–31. doi: https://doi.org/10.5154/r.rchsza.2015.10.16

Garatuza-Payan, J., Argentel-Martinez, L., Yepez, E. A., & Arredondo, T. (2018). Initial response of phenology and yield components of wheat (Triticum durum L., CIRNO C2008) under experimental warming field conditions in the Yaqui Valley. PeerJ, 6, e5064. doi: https://doi.org/10.7717/peerj.5064

García, C. A. R., Ramírez, J. R., Meza, J. R. M., Pérez-Pimentel, M. E., López, M. Á. L., & García, C. O. (2017). Árboles y arbustos útiles en una comunidad campesina de Jiquipilas, Chiapas. Lacandonia, 9(2), 11–16. Retrieved from https://cuid.unicach.mx/revistas/index.php/lacandonia/article/view/372

Gehring, C. A., Sthultz, C. M., Flores-Rentería, L., Whipple, A. V., & Whitham, T. G. (2017). Tree genetics defines fungal partner communities that may confer drought tolerance. Proceedings of the National Academy of Sciences, 114(42), 11169–11174. doi: https://doi.org/10.1073/pnas.1704022114

Gómez, A. H., Torres, C. L. M., & Suárez, P. R. (2017). Transformación conductual promovida por la Gestión Ambiental Comunitaria desde una percepción rural. Novedades en Población, 26, 244–254 Retrieved from http://scielo.sld.cu/pdf/rnp/v13n26/rnp200217.pdf

Gosset, E. (1917). Another differences calculus based on standard deviation and confidence interval. Statistical References, 26, 66–72.

Harfouche, A., Meilan, R., & Altman, A. (2014). Molecular and physiological responses to abiotic stress in forest trees and their relevance to tree improvement. Tree Physiology, 34(11), 1181–1198. doi: https://doi.org/10.1093/treephys/tpu012

Hernández-Herrera, J. A., Valenzuela-Núñez, L. M., Flores-Hernández, A., & Ríos-Saucedo, J. C. (2014). Análisis dimensional para determinar volumen y peso de madera de mezquite (Prosopis L.). Madera y Bosques, 20(3), 155–161. Retrieved from http://www.scielo.org.mx/pdf/mb/v20n3/v20n3a13.pdf

Herrera, M. H., Moreno, A., Villares, A., González, J., & Belmonte, B., (2017). Estudio de la abundancia de polifenoles y flavonoides en plantas del Valle del Yaqui, Sonora. Revista Entorno Académico, 19, 12–17. Retrieved from http://www.itesca.edu.mx/publicaciones/entorno/Entorno_Academico_19_Diciembre_2017.pdf

Jafarnia, S., Akbarinia, M., Hosseinpour, B., Modarres, S. A. M., & Salami, S. A. (2018). Effect of drought stress on some growth, morphological, physiological, and biochemical parameters of two different populations of Quercus brantii. iForest-Biogeosciences and Forestry, 11(2), 212–220. doi: https://doi.org/10.3832/ifor2496-010

Killi, D., Bussotti, F., Gottardini, E., Pollastrini, M., Mori, J., Tani, C., & Fini, A. (2018). Photosynthetic and morphological responses of oak species to temperature and [CO2] increased to levels predicted for 2050. Urban Forestry & Urban Greening, 31, 26–37. doi: https://doi.org/10.1016/j.ufug.2018.01.012

Lares-Orozco, M. F., Robles-Morúa, A., Yepez, E. A., & Handler, R. M. (2016). Global warming potential of intensive wheat production in the Yaqui Valley, Mexico: A resource for the design of localized mitigation strategies. Journal of Cleaner Production, 127, 522–532. doi: https://doi.org/10.1016/j.jclepro.2016.03.128

López-Franco, Y. L., Goycoolea, F. M., Valdez, M. A., & Calderón, B. A. M. (2006). Goma de mezquite: una alternativa de uso industrial. Interciencia, 31(3), 183–189. Retrieved from https://www.researchgate.net/publication/46416868_Goma_de_Mezquite_una_Alternativa_de_Uso_Industrial

Lovelock, C. E., Krauss, K. W., Osland, M. J., Reef, R., & Ball, M. C. (2016). The physiology of mangrove trees with changing climate. In G. Goldstein, & L. Santiago (Eds.), Tropical tree physiology (vol. 6, pp. 149–179). Springer, Cham. doi: https://doi.org/10.1007/978-3-319-27422-5_7

Manjarrez, J. C. Z. (2017). Un edén tropical. El Jardín Botánico de Culiacán. Gaceta de Museos, 40, 20–23. Retrieved from http://www.academia.edu/31129886/Un_Ed%C3%A9n_Tropical_El_Jard%C3%ADn_Bot%C3%A1nico_de_Culiac%C3%A1n

Martín, R. M. H., Flores, I. F. A., Moreno, M. S., Retes, L. R., & Amarillas, R. R. (2016). Impacto económico asociado con la cosecha de semilla de zamota y mezquite en la región central de Sonora, México. Revista Mexicana de Agronegocios, 20(38), 217–228. Retrieved from http://www.redalyc.org/pdf/141/14146082009.pdf

Miranda, Z. G. A., & Alejo, L. S. J. (2017). Contribuciones del conocimiento tradicional a la sustentabilidad: los sabios-educadores del “Parque Ejidal Ecoturístico Totolapan”, México. El Periplo Sustentable, 33, 690–722. Retrieved from https://rperiplo.uaemex.mx/article/view/9040

Miyazawa, Y., Dudley, B. D., Hughes, R. F., Vandemark, J., Cordell, S., Nullet, M. A., & Giambelluca, T. W. (2016). Non‐native tree in a dry coastal area in Hawai'i has high transpiration but restricts water use despite phreatophytic trait. Ecohydrology, 9(7), 1166–1176. doi: https://doi.org/10.1002/eco.1715

O'Brien, M. J., Engelbrecht, B. M., Joswig, J., Pereyra, G., Schuldt, B., Jansen, S., …Macinnis-Ng, C. (2017). A synthesis of tree functional traits related to drought‐induced mortality in forests across climatic zones. Journal of Applied Ecology, 54(6), 1669–1686. doi: https://doi.org/10.1111/1365-2664.12874

Osuna, L. E., & Meza, S. R. (2003). Alternativas para la explotación sostenible del mezquital de Baja California Sur. Baja California Sur, México: INIFAP.

Red de Estaciones Meteorológicas Automáticas de Sonora (REMAS). (2018). Retrieved May 12, 2018, from http://www.siafeson.com/remas/index.php

Rodríguez, S. E. N., Rojo, M. G. E., Ramírez, V. B., Martínez, R. R., Cong, H. M. D. L. C., Medina, T. S. M., & Piña, R. H. H. (2014). Análisis técnico del árbol del mezquite (Prosopis laevigata Humb. & Bonpl. ex Willd.) en México. Ra Ximhai, 10(3), 173–193. Retrieved from http://www.redalyc.org/html/461/46131111013

Rosabal, A. L., Martínez, G. L., Reyes, G. Y., Dell’Amico, R. J., & Núñez, V. M. (2014). Aspectos fisiológicos, bioquímicos y expresión de genes en condiciones de déficit hídrico. Influencia en el proceso de germinación. Cultivos Tropicales, 35(3), 24–35. Retrieved from http://scielo.sld.cu/pdf/ctr/v35n3/ctr03314.pdf

Sachan, S., & Jain, A. (2017). Mortality of tropical forest tree seedlings under water and salt stress conditions. Journal of Plant Stress Physiology, 2, 36–40. doi: https://doi.org/10.19071/jpsp.2016.v2.3081

Sadras, V. O., Villalobos, F. J., Orgaz, F., & Fereres, E. (2016). Effects of water stress on crop production. In F. J. Villalobos & E. Fereres (Eds.), Principles of agronomy for sustainable agriculture (pp. 189–204). USA: Springer International Publishing. doi: https://doi.org/10.1007/978-3-319-46116-8_14

Santos, V. A. H. F. D., Ferreira, M. J., Rodrigues, J. V. F. C., Garcia, M. N., Ceron, J. V. B., Nelson, B. W., & Saleska, S. R. (2018). Causes of reduced leaf‐level photosynthesis during strong El Niño drought in a Central Amazon forest. Global Change Biology, 24(9), 4266–4279. doi: https://doi.org/10.1111/gcb.14293

Saradadevi, R., Bramley, H., Palta, J. A., Edwards, E., & Siddique, K. H. (2016). Root biomass in the upper layer of the soil profile is related to the stomatal response of wheat as the soil dries. Functional Plant Biology, 43(1), 62–74. doi: https://doi.org/ 10.1071/FP15216

Saxena, D. C., Prasad, S. S., Parashar, R., & Rathi, I. (2016). Phenotypic characterization of specific adaptive physiological traits for heat tolerance in wheat. Indian Journal of Plant Physiology, 21(3), 318–322. doi: https://doi.org/10.1007/s40502-016-0241-4

Scafaro, A. P., Xiang, S., Long, B. M., Bahar, N. H., Weerasinghe, L. K., Creek, D., & Atkin, O. K. (2017). Strong thermal acclimation of photosynthesis in tropical and temperate wet‐forest tree species: the importance of altered Rubisco content. Global Change Biology, 23(7), 2783–2800. doi: https://doi.org/10.1111/gcb.13566

Scholander, P. F., Bradstreet, E. D., Hemmingsen, E. A., & Hammel, H. T. (1965). Sap pressure in vascular plants: negative hydrostatic pressure can be measured in plants. Science, 148(3668), 339–346. doi: https://doi.org/10.1126/science.148.3668.339

Secretaría de Economía (2016). NMX‐AA‐132‐SCFI‐2016. Muestreo de suelos para la identificación y la cuantificación de metales y metaloides, y manejo de la muestra, 2016. México. Retrieved from http://www.economia-nmx.gob.mx/normas/nmx/2010/nmx-aa-132-scfi-2016.pdf

StatSoft Inc. (2010). STATISTICA, version 10.1 para Windows. Author: Tulsa, OK, EUA.

Tasmina, T., Khan, A. R., Karim, A., Akter, N., & Islam, R. (2017). Physiological changes of wheat varieties under water deficit condition. Bangladesh Agronomy Journal, 19(2), 105–114. doi: https://doi.org/10.3329/baj.v19i2.31859

Tsai, C. J., Harding, S. A., & Cooke, J. E. (2018). Branching out: A new era of investigating physiological processes in forest trees using genomic tools. Tree Physiology, 38(3), 303–310. doi: https://doi.org/10.1093/treephys/tpy026

Tukey, J. W. (1960). A survey of sampling from contaminated distributions. In I. Olkin (Ed.), Contributions to probability and statistics: Essays in honor to Harold Hotelling. Redwood City: Stanford University Press.

Weiwei, L. U., Xinxiao, Y. U., Guodong, J. I. A., Hanzhi, L. I. & Ziqiang, L. I. U. (2018). Responses of intrinsic water-use efficiency and tree growth to climate change in semi-arid areas of North China. Scientific Reports, 8, 308. doi: https://doi.org/10.1038/s41598-017-18694-z

Zhu, S. D., Chen, Y. J., Ye, Q., He, P. C., Liu, H., Li, R. H., ... Cao, K. F. (2018). Leaf turgor loss point is correlated with drought tolerance and leaf carbon economics traits. Tree Physiology, 38(5), 658–663. doi: https://doi.org/10.1093/treephys/tpy013

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2019 Revista Chapingo Serie Ciencias Forestales y del Ambiente