Revista Chapingo Serie Ciencias Forestales y del Ambiente
Radial growth of pine species in stands subject to selection cutting in Santa María Lachixío, Oaxaca, Mexico
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF

Keywords

growth rings
competition índices
uneven-aged forest
increase in basal area
forest management

How to Cite

Trujillo-Martínez, H. A. ., Reyes-Hernández, V. J. ., Gómez-Guerrero, A. ., & Borja-de la Rosa, A. (2019). Radial growth of pine species in stands subject to selection cutting in Santa María Lachixío, Oaxaca, Mexico. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 26(1), 123–139. https://doi.org/10.5154/r.rchscfa.2018.09.064

##article.highlights##

  • Residual trees (47 %) increased their radial growth in the first five years after the cutting.
  • Increased growth was related to residual basal area, with a threshold of 1.3 m 2 (41.3 m 2 ·ha -1 ).
  • Stump diameter, diameter at breast height and competition influenced growth to a greater extent.
  • Management of competition from the area surrounding each tree is essential in forest management.

Abstract

Introduction: The evaluation of the effect of management activities on trees is essential to gain a better understanding of the processes occurring in the stands.  Objective: To evaluate the effect of selection cutting on the growth of pine species in uneven-aged stands. Materials and methods: Thirty sampling sites were established in two mixed pine stands subjected to selection cutting in 2003. The stumps of this harvest were used as site centers and the growth of the residual trees was evaluated in a 10-m radius; tree-size variables and competition indices were calculated. Results and discussion: In the first five years after the harvest, 47 % of residual trees showed significant growth (P ≤ 0.05). Stump diameter, diameter at breast height and competition were the most important variables to explain growth. The competition area of the harvested individuals (stumps) showed influence up to a 15-m radius. The increase in basal area (IBA) was 71 % with respect to pre-harvest growth. This increase was related to the basal area sum of the residual trees and 1.3 m2 per site (41.3 m2·ha-1) was established as the threshold from which a release is nullified by residual competition.  Conclusion: Selection cutting influences residual tree growth in a differentiated way; the response may be positive, negative or nil depending on size and local competition.
https://doi.org/10.5154/r.rchscfa.2018.09.064
PDF

References

Biondi, F. (1999). Comparing tree-ring chronologies and repeated timber inventories as forest monitoring tools. Ecological Applications, 9(1), 216–227. Retrieved from https://wolfweb.unr.edu/homepage/fbiondi/EcolApplic1999.pdf

Cambrón-Sandoval, V. H., Suzán-Azpiri, H., Vargas-Hernández, J. J., Sánchez-Vargas, N. M., & Sáenz-Romero, C. (2013). Estrategias de crecimiento y distribución de biomasa en Pinus pseudostrobus bajo diferentes condiciones de competencia. Revista Fitotecnia Mexicana, 36(1), 71–79.

Comisión Nacional Forestal (CONAFOR). (2001). Programa estratégico forestal para México 2025. Retrieved from http://era-mx.org/biblio/PEF_2025.pdf

Crecente-Campo, F., Vázquez-Gómez, E., Rodríguez-Soalleiro, R., & Diéguez-Aranda, U. (2007). Influencia de la competencia en el crecimiento individual de Pinus radiata D. Don en Galicia. Sociedad Española de Ciencias Forestales, 23, 167–174. Retrieved from http://secforestales.org/publicaciones/index.php/cuadernos_secf/article/view/9620/9538

Dang, H., Jiang, M., Zhang, Q., & Zhang, Y. (2007). Growth responses of subalpine fir (Abies fargesii) to climate variability in the Qinling Mountain, China. Forest Ecology and Management, 240(1-3), 143–150. doi: https://doi.org/10.1016/j.foreco.2006.12.021

Daniels, F., Burkhart, H. E., & Clason, T. R. (1986). A comparison of competition measures for predicting growth of loblolly pine trees. Canadian Journal of Forest Research,16(6), 1230–1237. doi: https://doi.org/10.1139/x86-218

Das, A. (2012). The effect of size and competition on tree growth rate in old-growth coniferous forests. Canadian Journal of Forest Research, 42(11), 1983–1995. doi: https://doi.org/10.1139/x2012-142

Dolezâl, J., Ishii, H., Vetrova, V. P., Sumida, A., & Hara, T. (2004). Tree growth and competition in a Betula platyphylla–Larix cajanderi post-fire forest in Central Kamchatka. Annals of Botany, 94(3), 333–343. doi: https://doi.org/10.1093/aob/mch149

Espinosa, B. M., García, S. M., & Valeria, E. O. (1994). Efecto de intensidades diferentes de raleo en el crecimiento de un rodal de pino radiata. Bosque, 15(1), 55–65. doi: https://doi.org/10.4206/bosque.1994.v15n1-07

Forget, E., Nolet, P., Doyon, F., Delagrange, S., & Jardon, Y. (2007). Ten-year response of northern hardwood stands to commercial selection cutting in southern Quebec, Canada. Forest Ecology and Management, 242(2-3), 764–765. doi: https://doi.org/10.1016/j.foreco.2007.02.010

Fraver, S., D’Amato, A. W., Bradford, J. B., Jonsson, B. G., Jönsson, M., & Esseen, P-A. (2014). Tree growth and competition in an old-growth Picea abies forest of boreal Sweden: influence of tree spatial patterning. Journal of Vegetation Science, 25(2), 374–385. doi: https://doi.org/10.1111/jvs.12096

Grissino-Mayer, H. D. (2001). Evaluating cross dating accuracy: A manual and tutorial for the computer program COFECHA. Tree-Ring Research 57(2), 205–221. Retrieved from https://www.researchgate.net/publication/244461190_Evaluating_crossdating_accuracy_a_manual_and_tutorial_for_the_computer_program_COFECHA

Hegyi, F. (1974). A simulation model for managing jack pine stands. In J. Fries (Ed.), Growth models for tree and stand simulation (pp. 74–90). Stockholm, Sweden: Royal Coll. of For.

Hernández-Díaz, J. C., Corral-Rivas, J. J., Quiñonez-Chávez, A., Bacon-Sobbe, J. R., & Vargas-Larreta, B. (2008). Evaluación del manejo forestal regular e irregular en bosques de la Sierra Madre Occidental. Madera y Bosques, 14(3), 25–41. Retrieved from http://www.scielo.org.mx/pdf/mb/v14n3/v14n3a2.pdf

Hocking, R. R. (1976). The analysis and selection of variables in linear regression. Biometrics, 32(1), 1–49. doi: https://doi.org/10.2307/2529336

Huang, J-G., Stadt, K. J., Dawson, A., & Comeau, P. G. (2013). Modelling growth-competition relationships in trembling aspen and white spruce mixed boreal forests of western Canada. PloS ONE, 8(10), 1–14. doi: https://doi.org/10.1371/journal.pone.0077607

Jones, T. A., Domke, G. M., & Thomas, S. C. (2009). Canopy tree growth responses following selection harvest in seven species varying in shade tolerance. Canadian Journal of Forest Research, 39(2), 430–440. doi: https://doi.org/10.1139/X08-186

Jones, T. A., & Thomas, S. C. (2004). The time course of diameter increment responses to selection harvests in Acer saccharum. Canadian Journal of Forest Research, 34, 1525–1533. doi: https://doi.org/10.1139/X04-034

Kang, J-S., Shibuya, M., & Shin, C-S. (2014). The effect of forest-thinning works on tree growth and forest environment. Forest Science and Technology, 10(1), 33–39. doi: https://doi.org/10.1080/21580103.2013.821958

Kariuki, M. (2008). Modelling the impacts of various thinning intensities on tree growth and survival in a mixed species eucalypt forest in central Gippsland, Victoria, Australia. Forest Ecology and Management, 256(12), 2007–2017. doi: https://doi.org/10.1016/j.foreco.2008.07.035

King, D. A., Davies, S. J., Nur-Supardi, M. N., & Tan, S. (2005). Tree growth is related to light interception and wood density in two mixed dipterocarp forests of Malaysia. Functional Ecology, 19(3), 445–453. doi: https://doi.org/10.1111/j.1365-2435.2005.00982.x

Li, Y., Härdtle, W., Bruelheide, H., Nadrowski, K., Scholten, T., von Wehrden, H., & von Oheimb, G. (2014). Site and neighborhood effects on growth of tree saplings in subtropical plantations (China). Forest Ecology and Management, 327, 118–127. doi: https://doi.org/10.1016/j.foreco.2014.04.039

Liu, B., Liang, E., Liu, K., & Camarero, J. J. (2018). Species- and elevation-dependent growth responses to climate warming of Mountain Forests in the Qinling Mountains, Central China. Forests, 9(5), 1–11. doi: https://doi.org/10.3390/f9050248

Looney, C. E., D’Amato, A. W., Fraver, S., Palik, B. J., & Reinikainen, M. R. (2016). Examining the influences of tree-to-tree competition and climate on size-growth relationships in hydric, multi-aged Fraxinus nigra stands. Forest Ecology and Management, 375, 238–248. doi: https://doi.org/10.1016/j.foreco.2016.05.050

Martín-Benito, D., Del Rio, M., Heinrich, I., Helle, G., & Cañellas, I. (2010). Response of climate-growth relationships and water use efficiency to thinning in a Pinus nigra afforestation. Forest Ecology and Management, 259(5), 967–975. doi: https://doi.org/10.1016/j.foreco.2009.12.001

Martin, L., & Ek, A. R. (1984). A comparison of competition measures and growth models for predicting plantation red pine diameter growth. Forest Science, 30(3), 731–743. doi: https://doi.org/10.1093/forestscience/30.3.731

Pedersen, R. O., Bollandsås, O. M., Gobakken, T., & Næsset, E. (2012). Deriving individual tree competition indices from airborne laser scanning. Forest Ecology and Management, 280, 150–165. doi: https://doi.org/10.1016/j.foreco.2013.07.040

Powers, M. D., Pregitzer, K. S., Palik, B. J., & Webster, C. R. (2009). Wood d13C, d18O and radial growth responses of residual red pine to variable retention harvesting. Tree Physiology, 30, 326–334. doi: https://doi.org/10.1093/treephys/tpp119

Regent Instruments Inc. (2009). WinDENDRO™ for tree-ring analysis. Quebec, Canada: Author.

Rodríguez-Ortiz, G., González-Hernández, V. A., Aldrete, A., De los Santos-Posadas, H. M., Gómez-Guerrero, A., & Fierros-González, A. M. (2011). Modelos para estimar crecimiento y eficiencia de crecimiento en plantaciones de Pinus patula en respuesta al aclareo. Revista Fitotecnia Mexicana, 34(3), 205–212. Retrieved from http://www.scielo.org.mx/pdf/rfm/v34n3/v34n3a12.pdf

Sánchez-Salguero, R., Linares, J. C., Camarero, J. J., Madrigal-González, J., Hevia, A., Sánchez-Miranda, A., …Rigling, A. (2015). Disentangling the effects of competition and climate on individual tree growth: A retrospective and dynamic approach in Scots pine. Forest Ecology and Management, 358, 12–25. doi: https://doi.org/10.1016/j.foreco.2015.08.034

Statistical Analysis Systems Institute (2014). The SAS system for windows, release 9.4. Cary, NC, USA: Author.

Tomé, M., & Burkhart, H. E. (1989). Distance-dependent competition measures for predicting growth of individual trees. Forest Science, 35(3), 816–831. Retrieved from https://www.researchgate.net/publication/233645214_Distance-Dependent_Competition_Measures_for_Predicting_Growth_of_Individual_Trees

Torres-Rojo, J. M. (2000). Sostenibilidad del volumen de cosecha calculado con el Método Mexicano de Ordenación de Montes. Madera y Bosques, 6(2), 57–72. doi: https://doi.org/10.21829/myb.2000.621335

Von Oheimb, G., Lang, A. C., Bruelheide, H., Forrester, D. I., Wäschea, I., Yu, M., & Härdtlea, W. (2011). Individual-tree radial growth in a subtropical broad-leaved forest: The role of local neighbourhood competition. Forest Ecology and Management, 261(3), 499–507. doi: https://doi.org/10.1016/j.foreco.2010.10.035

Wanshnong, R. K., Thakuria, D., Sangma, C. B., Ram, V., & Bora, P. K. (2013). Influence of hill slope on biological pools of carbon, nitrogen, and phosphorus in acidic alfisols of citrus orchard. CATENA, 111, 1–8. doi: https://doi.org/10.1016/j.catena.2013.07.009

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2020 Revista Chapingo Serie Ciencias Forestales y del Ambiente