Revista Chapingo Serie Ciencias Forestales y del Ambiente
Eichhornia crassipes (Mart.) Solms: an integrated phytoremediation and bioenergy system
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF

Keywords

water hyacinth
bioreactor
bioethanol
biohydrogen
adsorption
heavy metals

How to Cite

Carreño-Sayago, U. F. ., & Rodríguez-Parra, C. . (2019). Eichhornia crassipes (Mart.) Solms: an integrated phytoremediation and bioenergy system. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 25(3), 399–411. https://doi.org/10.5154/r.rchscfa.2018.06.051

##article.highlights##

  • Eichhornia crassipes is an aquatic plant that reproduces rapidly in polluted waters.
  • The state of the art of water treatment and biofuel production with E. crassipes was reviewed.
  • An integrated phytoremediation and bioenergy system, based on E. crassipes biomass, is proposed.
  • The design has three bioreactors for the production of bioenergy (hydrolysis, bioethanol and hydrogen).
  • The design can be adjusted to industrial scale conditions.

Abstract

Introduction: Eichhornia crassipes (Mart.) Solms is an aquatic plant that reproduces rapidly in polluted water. Due to the high adsorption capacity of heavy metals, the plant is used as a phytoremediation agent; its biomass can also be used biofuel production. Objective: To compile information on state-of-the-art water treatment processes and biofuel production with E. crassipes to design an integrated biohydrogen and bioethanol production process with the plant’s biomass. Materials and methods: The available literature on E. crassipes was reviewed to analyze the designs and propose an integrated phytoremediation and bioenergy system. Results and discussion: The proposed design can be adjusted to industrial scale conditions. This design includes a phytoremediation system, a bioreactor to generate hydrolysis, a bioreactor to generate bioethanol and, finally, a bioreactor to generate hydrogen. Conclusions: By consulting the state of the art of the proposed designs, it is possible to create and construct, on a large scale, a system for producing bioethanol and biohydrogen from E. crassipes biomass (loaded or not with heavy metals). In this way, the plant biomass is not wasted as it is today.
https://doi.org/10.5154/r.rchscfa.2018.06.051
PDF

References

Abdelraheem, W. H., Komy, Z. R., & Ismail, N. M. (2017). Electrochemical determination of Cu2+ complexation in the extract of E. crassipes by anodic stripping voltammetry. Arabian Journal of Chemistry, 10(1), S1105–S1110. doi: https://doi.org/10.1016/j.arabjc.2013.01.019

Adanikin, B. A., Ogunwande, G. A., & Adesanwo, O. O. (2017). Evaluation and kinetics of biogas yield from morning glory (Ipomoea aquatica) co-digested with water hyacinth (Eichhornia crassipes). Ecological Engineering, 98, 98–104. doi: https://doi.org/10.1016/j.ecoleng.2016.10.067

Abdel-Fattah, A. F., & Abdel-Naby, M. A. (2012). Pretreatment and enzymic saccharification of water hyacinth cellulose. Carbohydrate Polymers, 87(3), 2109–2113. doi: https://doi.org/10.1016/j.carbpol.2011.10.033

Ammar, N. S., Elhaes, H., Ibrahim, H. S., & Ibrahim, M. A. (2014). A novel structure for removal of pollutants from wastewater. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 121, 216–223. doi: https://doi.org/10.1016/j.saa.2013.10.063

Balasubramanian, D., Arunachalam, K., Das, A. K., & Arunachalam, A. (2012). Decomposition and nutrient release of Eichhornia crassipes (Mart.) Solms. under different trophic conditions in wetlands of eastern Himalayan foothills. Ecological Engineering, 44, 11–112. doi: https://doi.org/10.1016/j.ecoleng.2012.03.002

Benítez, L. T., Tovar, C. T., Ortiz, Á. V., Dunoyer, A. T., Alvear, M., Castillo, C., ... Madariaga, N. (2010). Producción de bioetanol a partir de la fermentación alcohólica de jarabes glucosados derivados de cáscaras de naranja y piña. Revista Educación en Ingeniería, 5(10), 120–125. doi: https://doi.org/10.26507/rei.v5n10.104

Borker, A. R., Mane, A. V., Saratale, G. D., & Pathade, G. R. (2013). Phytoremediation potential of Eichhornia crassipes for the treatment of cadmium in relation with biochemical and water parameters. Emirates Journal of Food and Agriculture, 25(6), 443–456. doi: https://doi.org/10.9755/ejfa.v25i6.13970

Bronzato, G. R. F. (2016). Investigação da biomassa de Eichhornia crassipes (aguapé) para a obtenção de etanol de segunda geração como um processo mitigatório da poluição aquática. Retrieved from https://repositorio.unesp.br/bitstream/handle/11449/141985/bronzato_grf_me_bot.pdf?sequence=3&isAllowed=y

Carreño, U. (2016a). Diseño y evaluación de un biosistema de tratamiento a escala piloto de aguas de curtiembres a través de la Eichhornia crassipes. Revista Colombiana de Biotecnología, 18(2), 74–82. doi: https://doi.org/10.15446/rev.colomb.biote.v18n2.52271

Carreño, U. (2016b). Diseño, construcción y desarrollo de un filtro biológico para las aguas contaminadas con cromo: estudio de caso. Ingenio Magno, 7(1), 22–30. Retrieved from http://revistas.ustatunja.edu.co/index.php/ingeniomagno/article/viewFile/1164/1128

Chen, Z. J., Tian, Y. H., Zhang, Y., Song, B. R., Li, H. C., & Chen, Z. H. (2016). Effects of root organic exudates on rhizosphere microbes and nutrient removal in the constructed wetlands. Ecological Engineering, 92, 243–250. doi: https://doi.org/10.1016/j.ecoleng.2016.04.001

Chuang, Y. S., Lay, C. H., Sen, B., Chen, C. C., Gopalakrishnan, K., Wu, J. H., & Lin, C. Y. (2011). Biohydrogen and biomethane from water hyacinth (Eichhornia crassipes) fermentation: effects of substrate concentration and incubation temperature. International Journal of Hydrogen Energy, 36(21), 14195–14203. doi: https://doi.org/10.1016/j.ijhydene.2011.04.188

Deng, L., Geng, M., Zhu, D., Zhou, W., Langdon, A., Wu, H., & Wang, Y. (2012). Effect of chemical and biological degumming on the adsorption of heavy metal by cellulose xanthogenates prepared from Eichhornia crassipes. Bioresource Technology, 107, 41–45. doi: https://doi.org/10.1016/j.biortech.2011.12.023

Dessì, P., Lakaniemi, A. M., & Lens, P. N. (2017). Biohydrogen production from xylose by fresh and digested activated sludge at 37, 55 and 70 °C. Water Research, 115, 120–129. doi: https://doi.org/10.1016/j.watres.2017.02.063

El-Zawahry, M. M., Abdelghaffar, F., Abdelghaffar, R. A., & Hassabo, A. G. (2016). Equilibrium and kinetic models on the adsorption of Reactive Black 5 from aqueous solution using Eichhornia crassipes/chitosan composite. Carbohydrate Polymers, 136, 507–515. doi: https://doi.org/10.1016/j.carbpol.2015.09.071

Ganguly, A., Chatterjee, P. K., & Dey, A. (2012). Studies on ethanol production from water hyacinth—A review. Renewable and Sustainable Energy Reviews, 16(1), 966–972. doi: https://doi.org/10.1016/j.rser.2011.09.018

García-Depraect, O., Gómez-Romero, J., León-Becerril, E., & López-López, A. (2017). A novel biohydrogen production process: Co-digestion of vinasse and nejayote as complex raw substrates using a robust inoculum. International Journal of Hydrogen Energy, 42(9), 5820–5831. doi: https://doi.org/10.1016/j.ijhydene.2016.11.204

Gupta, A., & Balomajumder, C. (2015). Removal of Cr (VI) and phenol using water hyacinth from single and binary solution in the artificial photosynthesis chamber. Journal of Water Process Engineering, 7, 74–82. doi: https://doi.org/10.1016/j.jwpe.2015.05.008

Hadad, H. R., Maine, M. A., Mufarrege, M. M., Del Sastre, M. V., & Di Luca, G. A. (2011). Bioaccumulation kinetics and toxic effects of Cr, Ni and Zn on Eichhornia crassipes. Journal of Hazardous Materials, 190(1-3), 1016–1022. doi: https://doi.org/10.1016/j.jhazmat.2011.04.044

Hokkanen, S., Repo, E., & Sillanpää, M. (2013). Removal of heavy metals from aqueous solutions by succinic anhydride modified mercerized nanocellulose. Chemical Engineering Journal, 223, 40–47. doi: https://doi.org/10.1016/j.cej.2013.02.054

Hossain, R., Chowdhury, M. K., Yeasmin, S., & Hoq, M. M. (2010). Production of ethanol using yeast isolates on water hyacinth and azolla. Bangladesh Journal of Microbiology, 27(2), 56–60. doi: https://doi.org/10.3329/bjm.v27i2.9173

Khan, M. A., Ngo, H. H., Guo, W., Liu, Y., Zhang, X., Guo, J., & Wang, J. (2017). Biohydrogen production from anaerobic digestion and its potential as renewable energy. Renewable Energy, 129(B), 754–768. doi: https://doi.org/10.1016/j.renene.2017.04.029

Kuldiloke, J., Eshtiaghi, M. N., Peeploy, P., & Amornrattanapong, P. (2010). Bioconversion of water hyacinth (Eichhornia crassipes) to bioethanol. Retrieved from http://agris.fao.org/agris-search/search.do?recordID=PH2013000169

Kumar, A., Singh, L. K., & Ghosh, S. (2009). Bioconversion of lignocellulosic fraction of water-hyacinth (Eichhornia crassipes) hemicellulose acid hydrolysate to ethanol by Pichia stipitis. Bioresource Technology, 100(13), 3293–3297. doi: https://doi.org/10.1016/j.biortech.2009.02.023

Lay, C. H., Sen, B., Chen, C. C., Wu, J. H., Lee, S. C., & Lin, C. Y. (2013). Co-fermentation of water hycianth and beverage wastewater in powder and pellet form for hydrogen production. Bioresource Technology, 135, 610–615. doi: https://doi.org/10.1016/j.biortech.2012.06.094

Lee, J., Park, K. Y., Cho, J., & Kim, J. Y. (2018). Releasing characteristics and fate of heavy metals from phytoremediation crop residues during anaerobic digestion. Chemosphere, 191, 520–526. doi: https://doi.org/10.1016/j.chemosphere.2017.10.072

Lin, S., Yang, H., Na, Z., & Lin, K. (2018). A novel biodegradable arsenic adsorbent by immobilization of iron oxyhydroxide (FeOOH) on the root powder of long-root Eichhornia crassipes. Chemosphere, 192, 258–266. doi: https://doi.org/10.1016/j.chemosphere.2017.10.163

Magdum, S., More, S., & Nadaf, A. (2012). Biochemical conversion of acid-pretreated water hyacinth (Eichhornia crassipes) to alcohol using Pichia stipitis NCIM3497. International Journal of Advanced Biotechnology and Research, 3(2), 585–590. Retrieved from https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2200481

Martínez, C., Torres, L. M., & de la Cruz, R. F. G. (2013). Evaluación de la cinética de adsorción de Zn2+ y Cd2+ a partir de soluciones unitarias y binarias por raíces de Eichhornia crassipes y Typha latifolia. Avances en Ciencias e Ingeniería, 4(2), 1–14. Retrieved fom https://dialnet.unirioja.es/servlet/articulo?codigo=4393058

Mahunon, S. E. R., Aina, M. P., Akowanou, A. V. O., Kouassi, E. K., Yao, B. K., Adouby, K., & Drogui, P. (2018). Optimization process of organic matter removal from wastewater by using Eichhornia crassipes. Environmental Science and Pollution Research, 25(29), 1–8. doi: https://doi.org/10.1007/s11356-018-2771-y

Mascarenhas, L. C., & Júnior, A. V. M. (2016). Experimental use of water hyacinth (Eichhornia crassipes) wetland for treating flowing waters in an urban park in Brazil. Brazilian Journal of Aquatic Science and Technology, 20(2), 18–23. doi: https://doi.org/10.14210/bjast.v20n2.7259

Mechery, J., Biji, B., Thomas, D. M., & Sylas, V. P. (2017). Biohydrogen production by locally isolated facultative bacterial species using the biomass of Eichhornia. crassipes: effect of acid and alkali treatment. Energy, Ecology and Environment, 2(5), 350–359. doi: https://doi.org/10.1007/s40974-017-0069-4

Mello, D., Carvalho, K. Q., Passig, F. H., Freire, F. B., Borges, A. C., Lima, M. X., & Marcelino, G. R. (2017). Nutrient and organic matter removal from low strength sewage treated with constructed wetlands. Environmental Technology, 40(1), 1–8. doi: https://doi.org/10.1080/09593330.2017.1377291

Mishima, D., Kuniki, M., Sei, K., Soda, S., Ike, M., & Fujita, M. (2008). Ethanol production from candidate energy crops: Water hyacinth (Eichhornia crassipes) and water lettuce (Pistia stratiotes L.). Bioreosurce Tecnhology, 99(7), 2495–2500. doi: https://doi.org/10.1016/j.biortech.2007.04.056

Mishra, V. K., & Tripathi, B. D. (2009). Accumulation of chromium and zinc from aqueous solutions using water hyacinth (Eichhornia crassipes). Journal of Hazardous Materials, 164(2-3), 1059–1063. doi: https://doi.org/10.1016/j.jhazmat.2008.09.020

Nagarajan, D., Lee, D. J., Kondo, A., & Chang, J. S. (2017). Recent insights into biohydrogen production by microalgae–from biophotolysis to dark fermentation. Bioresource Technology, 227, 373–387. doi: https://doi.org/10.1016/j.biortech.2016.12.104

Park, J. H., Anburajan, P., Kumar, G., Park, H. D., & Kim, S. H. (2017). Biohydrogen production integrated with an external dynamic membrane: A novel approach. International Journal of Hydrogen Energy, 42(45), 27543–27549. doi: https://doi.org/10.1016/j.ijhydene.2017.05.145

Pattra, S., & Sittijunda, S. (2015). Optimization of factors affecting acid hydrolysis of water hyacinth stem (Eichhornia crassipes) for bio-hydrogen production. Energy Procedia, 79, 833–837. doi: https://doi.org/10.1016/j.egypro.2015.11.574

Peña, C., & Arango, R. (2009). Evaluación de la producción de etanol utilizando cepas recombinantes de Saccharomyces cerevisiae a partir de melaza de caña de azúcar. Dyna, 76(159), 153–161. Retrieved from https://revistas.unal.edu.co/index.php/dyna/article/view/13051/13746

Rahman, S. N. A., Masdar, M. S., Rosli, M. I., Majlan, E. H., Husaini, T., Kamarudin, S. K., & Daud, W. R. W. (2016). Overview biohydrogen technologies and application in fuel cell technology. Renewable and Sustainable Energy Reviews, 66, 137–162. doi: https://doi.org/10.1016/j.rser.2016.07.047

Rani, N., Singh, B., & Shimrah, T. (2017). Chromium (VI) removal from aqueous solutions using Eichhornia as an adsorbent. Journal of Water Reuse and Desalination, 7(4), 461–467. doi: https://doi.org/10.2166/wrd.2016.094

Ri, P. C., Ren, N. Q., Ding, J., Kim, J. S., & Guo, W. Q. (2017). CFD optimization of horizontal continuous stirred-tank (HCSTR) reactor for bio-hydrogen production. International Journal of Hydrogen Energy, 42(15), 9630–9640. doi: https://doi.org/10.1016/j.ijhydene.2017.02.035

Riaño, A. M. S. (2010). Producción de bioetanol a partir de subproductos agroindustriales lignocelulósicos. Revista Tumbaga, 1(5), 61–91. Retrieved from http://revistas.ut.edu.co/index.php/tumbaga/article/view/58/58

Ríos, L. A. (2015). Producción de bioetanol a partir de jacinto de agua (Eichhornia crassipes) respecto a otros materiales lignocelulósicos. Revista Agunkuya, 2(1), 42–62. Retrieved from http://revia.areandina.edu.co/ojs/index.php/Cc/article/view/302/331

Roy, K., Ghosh, C. K., & Sarkar, C. K. (2016). Rapid detection of hazardous H2O2 by biogenic copper nanoparticles synthesized using Eichhornia crassipes extract. Microsystem Technologies, 25(5), 1699–1703. doi: https://doi.org/10.1007/s00542-017-3480-z

Saraswat, S., & Rai, J. P. N. (2010). Heavy metal adsorption from aqueous solution using Eichhornia crassipes dead biomass. International Journal of Mineral Processing, 94(3-4), 203–206. doi: https://doi.org/10.1016/j.minpro.2010.02.006

Sarkar, M., Rahman, A. K. M. L., & Bhoumik, N. C. (2017). Remediation of chromium and copper on water hyacinth (E. crassipes) shoot powder. Water Resources and Industry, 17, 1–6. doi: https://doi.org/10.1016/j.wri.2016.12.003

Sayago, U. F. C. (2019). Design of a sustainable development process between phytoremediation and production of bioethanol with Eichhornia crassipes. Environmental Monitoring and Assessment, 191(4), 221. doi: https://doi.org/10.1007/s10661-019-7328-0

Swain, G., Adhikari, S., & Mohanty, P. (2014). Phytoremediation of copper and cadmium from water using water hyacinth, Eichhornia crassipes. International Journal of Agricultural Science and Technology, 2(1), 1–7. doi: https://doi.org/10.14355/ijast.2014.0301.01

Tan, L., Zhu, D., Zhou, W., Mi, W., Ma, L., & He, W. (2008). Preferring cellulose of Eichhornia crassipes to prepare xanthogenate to other plant materials and its adsorption properties on copper. Bioresource Technology, 99(10), 4460–4466.

Thi, B. T. N., Ong, L. K., Thi, D. T. N., & Ju, Y. H. (2017). Effect of subcritical water pretreatment on cellulose recovery of water hyacinth (Eichhornia crassipes). Journal of the Taiwan Institute of Chemical Engineers, 71, 55–61. doi: https://doi.org/10.1016/j.jtice.2016.12.028

Trujillo, F., Rial, A., Canon, S., Rojas, D. M., & Sierra, F. (2010). Diagnóstico sobre el estado de conocimiento y conservación de la flora acuática y mamíferos asociados a los humedales de las cuencas Orinoco, Magdalena y Cauca. Retrieved from http://repository.humboldt.org.co/bitstream/handle/20.500.11761/31174/10-10-011-024.pdf?sequence=1&isAllowed=y

Vásquez, B. (2012). El tratamiento de los desechos líquidos de la zona de tintura en las flores para la exportación con Eichhornia crassipes (Buchón de Agua). Revista Lasallista de Investigación, 1(2), 23–27. Recuperado de http://www.redalyc.org/pdf/695/69510204.pdf

Wei, Y., Fang, Z., Zheng, L., & Tsang, E. P. (2017). Biosynthesized iron nanoparticles in aqueous extracts of Eichhornia crassipes and its mechanism in the hexavalent chromium removal. Applied Surface Science, 399, 322–329. doi: https://doi.org/10.1016/j.apsusc.2016.12.090

Wu, H., Zhang, J., Ngo, H. H., Guo, W., Hu, Z., Liang, S., ...Liu, H. (2015). A review on the sustainability of constructed wetlands for wastewater treatment: design and operation. Bioresource Technology, 175, 594–601. doi: https://doi.org/10.1016/j.biortech.2014.10.068

Yang, X., Chen, S., & Zhang, R. (2014). Utilization of two invasive free-floating aquatic plants (Pistia stratiotes and Eichhornia crassipes) as sorbents for oil removal. Environmental Science and Pollution Research, 21(1), 781–786. doi: https://doi.org/10.1007/s11356-013-2232-6

Yi, Z. J., Yao, J., Chen, H. L., Wang, F., Yuan, Z. M., & Liu, X. (2016). Uranium biosorption from aqueous solution onto Eichhornia crassipes. Journal of Environmental Radioactivity, 154, 43–51. doi: https://doi.org/10.1016/j.jenvrad.2016.01.012

Zabed, H., Sahu, J. N., Boyce, A. N., & Faruq, G. (2016). Fuel ethanol production from lignocellulosic biomass: an overview on feedstocks and technological approaches. Renewable and Sustainable Energy Reviews, 66, 751–774. doi: https://doi.org/10.1016/j.rser.2016.08.038

Zhou, W., Zhu, D., Langdon, A., Li, L., Liao, S., & Tan, L. (2009). The structure characterization of cellulose xanthogenate derived from the straw of Eichhornia crassipes. Bioresource Technology, 100(21), 5366–5369. doi: https://doi.org/10.1016/j.biortech.2009.05.066

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2019 Revista Chapingo Serie Ciencias Forestales y del Ambiente