Revista Chapingo Serie Ciencias Forestales y del Ambiente
Potentially toxic minerals in environmental liabilities in Noria de Ángeles, Zacatecas
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF
ePUB

Keywords

Cadmium
mercury
lead
arsenic
polluting elements
mining activity

How to Cite

Cerón-Rivera, C., Martínez-Montoya, J. F., Olmos-Oropeza, G., Palacio-Núñez, J., & Espinosa-Reyes, G. (2018). Potentially toxic minerals in environmental liabilities in Noria de Ángeles, Zacatecas. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 24(3), 329–337. https://doi.org/10.5154/r.rchscfa.2017.12.067

##article.highlights##

  • The Hg in environmental liabilities (ELs) did not exceed the maximum permissible limit (MPL) set out in regulations.
  • The Cd, As and Pb concentrations in the soil of the ELs exceeded the MPL established by the standard.
  • In the waterbodies, the Pb, Hg, Cd and As concentrations were higher than the MPL.
  • The ELs and waterbodies of Noria de Ángeles, Zacatecas, put the health of the population at risk.

Abstract

Introduction: Sites polluted by mining activity represent a risk to human health.
Objective: To determine the concentration of toxic minerals (Hg, Pb, Cd and As) in two environmental liabilities (ELs) in Noria de Ángeles, Zacatecas.
Materials and methods: Soil samples from two ELs and a reference site were taken based on NMX-AA-132-SCFI-2006; in addition, a spring and waterbodies adjacent to or on the ELs were sampled, in accordance with NOM-230-SSA1-2002. Toxic elements in soil and water were analyzed in accordance with NOM-147-SEMARNAT/SSA1-2004 and NOM-127-SSA1-1994, respectively. The concentrations of elements in the soil were subjected to an analysis of variance and Tukey’s range test (< 0.05). 
Results and discussion: The Hg concentration was higher (< 0.05) in the ELs than in the reference site, but it did not exceed the maximum permissible limits (MPL) established by the standards. The Cd and As in the soil of the ELs and reference site exceeded the MPL, and the Pb only in the ELs. It is deduced that the As has a mainly geological origin, since its content in the reference site was higher than the recent EL. In the waterbodies, the Pb, Hg, Cd and As concentrations were much higher than the MPL.
Conclusion: The Pb, Cd and As in the ELs, and the Pb, Cd, Hg and As in the waterbodies pose a risk to the health of the residents of Noria de Ángeles, Zacatecas.

https://doi.org/10.5154/r.rchscfa.2017.12.067
PDF
ePUB

References

Adriano, D. C. (2001). Trace elements in terrestrial environmental biogeochemistry, bioavailability, and risks of metals (2nd ed.). New York, USA: Springer Verlag.

Arellano, G. (1970). Cubica y muestreo de los jales de Noria de Ángeles, Zacatecas, ubicados dentro del terreno urbano denominado “La Hacienda Grande”, propiedad del Sr. E. W. Bergmann. Zacatecas, México: Consejo de Recursos Naturales no Renovables.

Balderas-Plata, M. A., Gutiérrez-Castorena, M. C., Carrillo-González, R., Ortiz-Solorio, C. A., & Lugo-de la Fuente, J. A. (2006). Distribución de elementos traza en los suelos de las microcuencas en Texcoco. Terra Latinoamericana, 24(4), 451–461. Retrieved from http://hdl.handle.net/20.500.11799/39389

Bravo-Nieto, J. (1988). Geología del yacimiento Real de Ángeles, municipio de Noria de Ángeles, Zacatecas. En G. P. Salas (Ed.), Geología Económica de México (pp. 505–514). México: Fondo de Cultura Económica.

Comisión Nacional del Agua (CONAGUA). (2017). Estaciones meteorológicas automáticas. Retrieved August 20, 2017, from http://smn.cna.gob.mx/es/pronosticos/8-smn-general/38-estaciones-meteorologicas-automaticas-emas

Dirección General de Minas. (2015). Estadísticas 2015. Retrieved June 17, 2016 from http://www.siam.economia.gob.mx/swb/es/siam/p_Estadistica

Elyaziji, A., Khalil, A., Hakkou, R., Benzaazoua, M., & Alansari, A. (2016). Assessment of trace elements in soils and mine water surrounding a closed manganese mine (Anti Atlas, Morocco). Mine Water and the Environment, 35(4), 486–496. doi: https://doi.org/10.1007/s10230-016-0397-1

García-Rico, L., Meza-Figueroa, D., Gandolfi, J. A., Ríos-Salas, R. D., Romero, M. F., & Meza-Montenegro, M. M. (2016). Dust-metal source in an urbanized arid zone: Implications for health-risk assessments. Archives of Environmental Contamination and Toxicology, 70(3), 522–533. doi: https://doi.org/10.1007/s00244-015-0229-5

Himley, M. (2014). Mining history: Mobilizing the past in struggles over mineral extraction in Peru. Geographical Review, 104(2), 174–191. doi: https://doi.org/10.1111/j.1931-0846.2014.12016.x

Instituto Nacional de Estadística y Geografía (INEGI). (2015). Ortofoto F14A71a escala 1:20000. México: Autor.

Jeong-Hun, P., & Kyoung-Kyoon, C. (2013). Risk assessment of soil, water and crops in abandoned Geumryeong mine in South Korea. Journal of Geochemical Exploration, 128, 17–123. doi: https://doi.org/10.1016/j.gexplo.2013.02.004

Kyunghee, J., Jungkon, K., Minjung, L., Soyoung, P., Ho-Jang, K., Hae-Kwan, C., …Kyungho, C. (2013). Assessment of exposure to heavy metals and health risks among residents near abandoned metal mines in Goseong, Korea. Environmental Pollution, 178, 322–328. doi: https://doi.org/10.1016/j.envpol.2013.03.031

McSwane, D., French, J., & Klein, R. (2015). Environmental health and safety. In B. Bradsher, G. Wojtala, C. Kaml, C. Weiss, & D. Read (Eds.), Regulatory foundations for the food protection professional (pp. 125–141). USA: Springer.

Mendez, M. O., & Maier, R. M. (2008). Phytostabilization of mine tailings in arid and semi-arid environments - An emerging remediation technology. Environmental Health Perspectives, 116(3), 278–283. doi: https://doi.org/10.1289/ehp.10608

Nava-Ruíz, C., & Méndez-Armenta, M. (2011). Efectos neurotóxicos de metales pesados (cadmio, plomo, arsénico y talio). Archivos de Neurociencias, 16(3), 140–147. Retrieved from http://www.medigraphic.com/pdfs/arcneu/ane-2011/ane113f.pdf

Navarro, M. C., Pérez-Sirvent, C., Martínez-Sánchez, M., Vidal, J., Tovar, P. J., & Bechb, J. (2008). Abandoned mine sites as a source of contamination by heavy metals: A case study in a semi-arid zone. Journal of Geochemical Exploration, 96(2-3), 183–193. doi: https://doi.org/10.1016/j.gexplo.2007.04.011

Nouri, M., & Haddioui, A. (2015). Human and animal health risk assessment of metal contamination in soil and plants from Ait Ammar abandoned iron mine, Morocco. Environmental Monitoring and Assessment, 188(1), 6. doi: https://doi.org/10.1007/s10661-015-5012-6

Oyarzún, J., Maturana, H., Paulo, A., & Pasieczna, A. (2003). Heavy metals in stream sediments from the Coquimbo region (Chile): Effects of sustained mining and natural processes in a semi-arid Andean Basin. Mine Water and the Environment, 22(3), 155–161. Retrieved from https://link.springer.com/content/pdf/10.1007%2Fs10230-003-0016-9.pdf

Secretaría de Economía (SE). (2006). Norma Mexicana NMX-AA-132-SCFI-2006, Muestreo de suelos para la identificación y la cuantificación de metales y metaloides, y manejo de la muestra. México: Diario Oficial de la Federación. Retrieved from http://www.cmic.org.mx/comisiones/Sectoriales/medioambiente/Varios/Leyes_y_Normas_SEMARNAT/NMX/Contaminaci%C3%B3n%20del%20Suelo/2.2006.pdf

Secretaría de Salud y Asistencia (SSA). (2000). Norma Oficial Mexicana NOM-127-SSA1-1994, Salud ambiental. Agua para uso y consumo humano. Límites permisibles de calidad y tratamientos a que debe someterse el agua para su potabilización. México: Diario Oficial de la Federación. Retrieved from http://www.agrolab.com.mx/sitev002/sitev001/assets/nom-127-ssa1-1994.pdf

Secretaría de Salud y Asistencia (SSA). (2003). Norma Oficial Mexicana NOM-230-SSA1-2002. Salud Ambiental. Agua para uso y consumo humano. Requisitos sanitarios que se deben cumplir en los sistemas de abastecimiento públicos y privados durante el manejo del agua. Procedimientos sanitarios para el muestreo. México: Diario Oficial de la Federación. Retrieved from http://www.salud.gob.mx/unidades/cdi/nom/230ssa102.html

Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT). (2002). Norma Oficial Mexicana NOM-021-RECNAT-2000, Que establece las especificaciones de fertilidad, salinidad y clasificación de suelos. Estudios, muestreo y análisis. México: Diario Oficial de la Federación. Retrieved from http://biblioteca.semarnat.gob.mx/janium/Documentos/Ciga/libros2009/DO2280n.pdf

Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT). (2007). Norma Oficial Mexicana NOM-147-SEMARNAT/SSA1-2004. Que establece criterios para determinar las concentraciones de remediación de suelos contaminados por arsénico, bario, berilio, cadmio, cromo hexavalente, mercurio, níquel, plata, plomo, selenio, talio y/o vanadio. México: Diario Oficial de la Federación (Segunda Sección). Retrieved from http://www.profepa.gob.mx/innovaportal/file/1392/1/nom-147-semarnat_ssa1-2004.pdf

Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT). (2014). El medio ambiente en México. Residuos peligrosos y sitios contaminados. Retrieved from http://apps1.semarnat.gob.mx/dgeia/informe_resumen14/00_mensajes/07_residuos.html

Servicio Geológico Mexicano (SGM). (2016). Panorama minero del estado de Zacatecas. Retrieved from http://www.sgm.gob.mx/pdfs/ZACATECAS.pdf

Statistical Analysis Software Inc. (SAS). (2015). SAS® 9.4 In-database products: User’s guide (6th ed.). Cary, NC, USA: Author. Retrieved from http://support.sas.com/documentation/cdl/en/indbug/68442/PDF/default/indbug.pdf

Steel, R. G. D., & Torrie, J. H. (1980). Principles and procedures of statistics. A biometrical approach (2nd ed.). USA: McGraw-Hill.

Steller, M. V., Domínguez-Mariani, E., Garrido, S. E., & Avilés, M. (2015). Groundwater pollution by arsenic and other toxic elements in an abandoned silver mine, Mexico. Environmental Earth Science, 74(4), 2893–2906. doi: https://doi.org/10.1007/s12665-015-4315-9

Unger, C. J., Lechner, A. M., Kenway, J., Glenn, V., & Walton, A. (2015). A jurisdictional maturity model for risk management, accountability and continual improvement of abandoned mine remediation programs. Resources Policy, 43, 1–10. doi: https://doi.org/10.1016/j.resourpol.2014.10.008

United States Environmental Protection Agency (USEPA). (2009). National primary drinking water regulations. US Federal MLCs. Esdat environmental database management software. EPA 816-09-004 Retrieved from http://esdat.net/Environmental%20Standards/US/Federal/US%20Federal%20MLCs.pdf

United States Environmental Protection Agency (USEPA). (2017). Regional screening level (RSL) Summary table (TR=1E‐06, HQ=0.1). Retrieved from http://esdat.net/Environmental%20Standards/US/Region_3_6_9/USEPA%20RSL%20June%202017%20THQ%20=%200.1.pdf

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2018 Revista Chapingo Serie Ciencias Forestales y del Ambiente