Revista Chapingo Serie Ciencias Forestales y del Ambiente
Optimum cutting ages in hybrid poplar plantations including carbon sequestration: A case study in Turkey
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF
ePUB

Keywords

Cutting age
forest management
climate change
net present value
carbon sequestration

How to Cite

Keleş, S. . (2016). Optimum cutting ages in hybrid poplar plantations including carbon sequestration: A case study in Turkey. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 22(3), 339–349. https://doi.org/10.5154/r.rchscfa.2015.12.053

Abstract

Determining optimum cutting ages including various forest ecosystem values together with wood production is extremely important in forestry now. This study presents the optimum cutting ages in hybrid poplar plantations (Populus x euramericana [Dode] Guinier cv. I-214) including timber production and carbon sequestration values in Turkey. It also evaluates the effects of different discount rates and carbon prices on the optimum cutting ages using net present value approach. The growth and yield curves and biomass/ carbon conversion factors for hybrid poplar plantations with forest plantation costs are used to determine the optimum cutting ages. Results of the case study showed that the integration of carbon sequestration benefits into wood benefits increased the optimum cutting ages of hybrid poplar plantations. Optimum cutting ages decreased from 19 to 14 years depending on the increase in discount rates. When carbon prices increased, the optimum cutting ages also increased from 17 to 20 years. In the presence of carbon sequestration benefits, increasing the optimum cutting age yields net economic benefits of 374 to 1,654 US$·ha-1. Total net present values obtained from wood production and carbon sequestration benefits increased between 6 and 26 % depending on the increase in carbon prices (from 0 to 40 US$·t-1 carbon).

https://doi.org/10.5154/r.rchscfa.2015.12.053
PDF
ePUB

References

Asante, P., & Armstrong, G. W. (2012). Optimal forest harvest age considering carbon sequestration in multiple carbon pools: A comparative statics analysis. Journal of Forest Economics, 18, 145-156. doi: https://doi.org/10.1016/j.jfe.2011.12.002

Başkent, E. Z., Keleş, S., & Yolasığmaz, H. A. (2008). Comparing multi-purpose forest management with timber management in incorporating timber, carbon and oxygen values: A case study. Scandinavian Journal of Forest Research, 23(2), 105-120. doi: https://doi.org/10.1080/02827580701803536

Başkent, E. Z., Keleş, S., & Kadıoğulları, A. İ. & Bingöl, O. (2011). Quantifying the effects of forest management strategies on the production of forest values: timber, carbon, oxygen, water, and soil. Environmental Modeling and Assessment, 16, 145-152. doi: https://doi.org/10.1007/s10666-010-9238-y

Başkent, E. Z., Keleş, S., & Kadıoğulları, A. İ. (2014). Challenges in developing and implementing a decision support systems (ETÇAP) in forest management planning: A case study in Honaz and İbradı, Turkey. Scandinavian Journal of Forest Research, 29(sup1), 121-131. doi: https://doi.org/10.1080/02827581.2013.822543

Birler, A. S. (2009). Industrial forest plantations. Turkey: Düzce University, Faculty of Forestry.

Cacho, O. J., Hean, R. L., & Wise, R. M. (2003). Carbon-accounting methods and reforestation incentives. The Australian Journal of Agricultural and Resource Economics, 47(2), 153-179. doi: https://doi.org/10.1111/1467-8489.00208

Demirci, U., & Öztürk, A. (2015). Carbon markets as a financial instrument in the forestry sector in Turkey. International Forestry Review, 17(2), 141-152. doi: https://doi.org/10.1505/146554815815500606

Diaz-Balteiro, L., Martell, D. L., Romero, C., & Weintraub, A. (2014). The optimal rotation of a flammable forest stand when both carbon sequestration and timber are valued: A multi-criteria approach. Natural Hazards, 72(2), 375-387. doi: https://doi.org/10.1007/s11069-013-1013-3

Diaz-Balteiro, L., & Rodriguez, L. C. E. (2006). Optimal rotations on Eucalyptus plantations including carbon sequestration- A comparison of results in Brazil and Spain. Forest Ecology and Management, 229, 247-258. doi: https://doi.org/10.1016/j.foreco.2006.04.005

Kadıoğulları, A.İ., & Karahalil, U. (2013). Spatiotemporal change of carbon storage in forest biomass: A case study in Köprülü Canyon National Park. Kastamonu Üniversitesi Orman Fakültesi Dergisi, 13(1), 1-14. https://www.researchgate.net/publication/265683339_Spatiotemporal_Change_of_Carbon_Storage_in_Forest_Biomass_A_case_Study_in_Koprulu_Canyon_National_Park

Keleş, S. (2010). Forest optimization models including timber production and carbon sequestration values of forest ecosystems: A case study. International Journal of Sustainable Development and World Ecology, 17(6), 468- 474. doi: https://doi.org/10.1080/13504509.2010.519574

Keleş, S. (2015). Comparison of alternative approaches of estimating above-ground tree biomass in a forest ecosystem of Turkey. International Journal of Global Warming, 9(3), 397–406. doi: https://doi.org/10.1504/IJGW.2016.075449

Keleş, S., & Başkent, E. Z. (2007). Modeling and analyzing timber production and carbon sequestration values of forest ecosystems: A case study. Polish Journal of Environmental Studies, 16(3), 473-479. http://www.pjoes.com/pdf/16.3/473-479.pdf

Keleş, S., Kadıoğulları, A. İ., & Başkent, E. Z. (2012). The effects of land-use and land-cover changes on carbon storage in forest timber biomass: A case study in Torul, Turkey. Journal of Land Use Science, 7(3), 125-133. doi: https://doi.org/10.1080/1747423X.2010.537789

Kula, E., & Gunalay, Y. (2012). Carbon sequestration, optimum forest rotation and their environmental impact. Environmental Impact Assessment Review, 37, 18-22. doi: https://doi.org/10.1016/j.eiar.2011.08.007

Labrecque, S., Fournier, R. A., Luther, J. E., & Piercey, D. (2006). A comparison of four methods to map biomass from Landsat-TM and inventory data in western Newfoundland. Forest Ecology and Management, 226(1- 3), 129–144. doi: https://doi.org/10.1016/j.foreco.2006.01.030

Olschewski, R., & Benitez, P. C. (2010). Optimizing joint production of timber and carbon sequestration of afforestation projects. Journal of Forest Economics, 16(1), 1-10. doi: https://doi.org/10.1016/j.jfe.2009.03.002

Nepal, P., Grala, R. K., & Grebner, D. L. (2012). Financial feasibility of increasing carbon sequestration in harvested wood products in Mississippi. Forest Policy and Economics, 14(1), 99-106. doi: https://doi.org/10.1016/j.forpol.2011.08.005

Nijnik, M., Pajot, G., Moffat, A. J., & Slee, B. (2013). An economic analysis of the establishment of forest plantations in the United Kingdom to mitigate climatic change. Forest Policy and Economics, 26, 34-42. doi: https://doi.org/10.1016/j.forpol.2012.10.002

Romero, C., Rios, V., & Diaz-Balteiro, L. (1998). Optimal forest rotation age when carbon captured is considered: theory and applications. The Journal of the Operational Research Society, 49(2), 121-131. doi: https://doi.org/10.2307/3009978

Sanquetta, C. R., Corte, A., & da Silva, F. (2011). Biomass expansion factor and root-to-shoot ratio for Pinus in Brazil. Carbon Balance and Management, 6(6), 1–8. doi: https://doi.org/10.1186/1750-0680-6-6

Sivrikaya, F., Keleş, S., & Çakır, G. (2007). Spatial distribution and temporal change of carbon storage in timber biomass of two different forest management units. Environmental Monitoring and Assessment, 132(1-3), 429- 438. doi: https://doi.org/10.1007/s10661-006-9545-6

Sohngen, B., & Brown, S. (2008). Extending timber rotations: Carbon and cost implications. Climate Policy, 8(5), 435- 451. doi: https://doi.org/10.3763/cpol.2007.0396

Tolunay, D. (2011). Total carbon stock and carbon accumulation in living tree biomass in forest ecosystems of Turkey. Turkish Journal of Agriculture and Forestry, 35(3), 265-279. doi: https://doi.org/10.3906/tar-0909-369

Torres, I. L., Perez, S. O., Fernandez, A. M., & Belda, C. F. (2010). Estimating the optimal rotation age of Pinus nigra in the Spanish Iberian System applying discrete optimal control. Forest Systems, 19(3), 306-314. doi: https://doi.org/10.5424/fs/2010193-8560

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2016 Revista Chapingo Serie Ciencias Forestales y del Ambiente