Revista Chapingo Serie Ciencias Forestales y del Ambiente
Basal area increment series of dominant trees of Pseudotsuga menziesii (Mirb.) Franco show periodicity according to global climate patterns
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF
ePUB

Keywords

Dendrochronology
tree-ring
forest productivity
temperate forests
time series analysis

How to Cite

Castruita-Esparza, L. U., Correa-Díaz, A. ., Gómez-Guerrero, A., Villanueva-Díaz, J. ., Ramírez-Guzmán, M. E. ., Velázquez-Martínez, A. ., & Ángeles-Pérez, G. . (2016). Basal area increment series of dominant trees of Pseudotsuga menziesii (Mirb.) Franco show periodicity according to global climate patterns. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 22(3), 379–397. https://doi.org/10.5154/r.rchscfa.2015.10.048

Abstract

Tree species like Pseudotsuga menziesii (Mirb.) Franco (Douglas-fir) are sensitive to climate cycles and show well defined growth rings. The careful selection of dominant trees with circular trunk section allow the analysis of tree growth trajectories. In this study, we used direct measurements of basal area increment (BAI) to explain biological periodicity and forecast basal area growth of Douglas-fir growing in Western Mexico. To remove the age effect on tree growth we also ran the analysis in terms of cambial age. Results showed significant (P < 0.05) correlation between BAI and precipitation from January to July. We found periodicities in tree growth of 7, 21, 27 and 60 years. However, the 60-year period, was determinant to build an ARIMA model (0,1,1), to forecast BAI for the next decades. Tree growth projections suggest reduced BAI in mature dominant trees for the next decades. Decreased tree-growth is an unexpected result, as BAI in dominant trees remains constant up to the biological age. Our finding is concurrent with a general decrement in tree growth in other forests of the world due to water stress, which suggests that the future climatic variability may worsen health conditions of Douglas-fir forests in North Mexico.

https://doi.org/10.5154/r.rchscfa.2015.10.048
PDF
ePUB

References

Arreola-Ortiz, M. R., & Návar-Cháidez, J. J. (2010). Análisis de sequías y productividad con cronologías de Pseudotsuga menziesii Rob. & Fern., y su asociación con el niño en el nordeste de México. Investigaciones geográficas, 7-20. http://www.scielo.org.mx/pdf/igeo/n71/n71a2.pdf

Berner, L. T., Beck, P. S. A., Bunn, A. G., & Goetz, S. J. (2013). Plant response to climate change along the forest-tundra ecotone in northeastern Siberia. Global Change Biology, 19(11), 3449-3462. doi: https://doi.org/10.1111/gcb.12304

Biondi, F., & Qeadan, F. (2008). A theory-driven approach to tree-ring standardization: Defining the biological trend from expected basal area increment. Tree-Ring Research, 64(2), 81-96. doi: https://doi.org/10.3959/2008-6.1

Biondi, F., & Waikul, K. (2004). DENDROCLIM2002: A C++ program for statistical calibration of climate signals in tree-ring chronologies. Computers & Geosciences, 30(3), 303-311. doi: https://doi.org/10.1016/j.cageo.2003.11.004

Black, B. A., Colbert, J. J., & Pederson, N. (2008). Relationships between radial growth rates and lifespan within North American tree species. Ecoscience, 15(3), 349-357. doi: https://doi.org/10.2980/15-3-3149

Box, G. E. P., & Jenkins, G. M. (1970). Time series analisys, forecasting and control. San Francisco, USA: Holden-Day.

Briffa, K. R., & Melvin, T. M. (2011). A closer look at regional curve standardization of tree-ring records: Justification of the need, a warning of some pitfalls, and suggested improvements in its application. In K. M. Hughes, W. T. Swetnam & F. H. Diaz (Eds.), Dendroclimatology: Progress and Prospects (pp. 113- 145). Dordrecht, UK: Springer Netherlands. doi: https://doi.org/10.1007/978-1-4020-5725-0_5

Castruita, E. L. U. (2014). Variabilidad climática, eficiencia de uso de agua intrínseca y crecimiento del área basal en Bosques del norte de México. (Tesis doctoral, Colegio de Postgraduados, México. http://www.biblio.colpos.mx:8080/jspui/bitstream/handle/10521/2384/Castruita_Esparza_LU_DC_Forestal_2014.pdf?sequence=1

Cerano, P. J., Villanueva, D. J., Valdéz, C. R., Méndez, G. J., & Constante, G. V. (2011). Sequías reconstruidas en los últimos 600 años para el noreste de México. Revista Mexicana de Ciencias Agrícolas, 2, 235-249. http://www.redalyc.org/articulo.oa?id=263121431006

Cook, E. R. (1983). A time series analysis approach to tree-ring standardization. Ph. D. dissertation, University of Arizona, USA.

Cook, E. R. (1987). The decomposition of tree-ring series for environmental studies. Tree-Ring Bulletin, 47, 37-59. http://arizona.openrepository.com/arizona/handle/10150/261788

Cook, E. R., & Holmes, R. L. (1984). Program ARSTAN and users manual. Tucson, AZ, USA: Laboratory of Tree-Ring Research, University of Arizona.

Díaz, S. C., Therrell, M. D., Stahle, D. W., & Cleaveland, M. K. (2002). Chihuahua (Mexico) winter-spring precipitation reconstructed from tree-rings, 1647- 1992. Climate Research, 22(3), 237-244. doi: https://doi.org/10.3354/cr022237

Esper, J., Benz, M., & Pederson, N. (2012). Influence of wood harvest on tree-ring time-series of Picea abies in a temperate forest. Forest Ecology and Management, 284, 86-92. doi: https://doi.org/10.1016/j.foreco.2012.07.047

Fuller, W. A. (1976). Introduction to statical time series. New York, USA: John Wiley & Sons, Inc.

García-Arévalo, A. (2008). Vegetación y flora de un bosque relictual de Picea chihuahuana Martínez del norte de México. Polibotánica, 25, 45-68. http://www.scielo.org.mx/pdf/polib/n25/n25a5.pdf

Gomez-Guerrero, A., Silva, L. C. R., Barrera-Reyes, M., Kishchuk, B., Velazquez-Martinez, A., Martinez- Trinidad, T., . . . Horwath, W. R. (2013). Growth decline and divergent tree ring isotopic composition (13C and 18O) contradict predictions of CO2 stimulation in high altitudinal forests. Global Change Biology, 19(6), 1748-1758. doi: https://doi.org/10.1111/gcb.12170

González-Elizondo, M., Jurado, E., Návar, J., González- Elizondo, M. S., Villanueva, J., Aguirre, O., & Jiménez, J. (2005). Tree-rings and climate relationships for douglas-fir chronologies from sierra madre occidental, mexico: A 1681–2001 rain reconstruction. Forest Ecology and Management, 213, 39- 53. doi: https://doi.org/10.1016/j.foreco.2005.03.012

González, E. M. S., González, M. E., & Márquez, M. A. L. (2007). Vegetación y ecorregiones de Durango. México: Plaza y Valdés.

Griesbauer, H., & Scott, G. D. (2010). Assessing the climatic sensitivity of Douglas-fir at its northern range margins in British Columbia, Canada. Trees, 24(2), 375- 389. doi: https://doi.org/10.1007/s00468-009-0407-z

Gugger, P. F., González-Rodríguez, A., Rodríguez-Correa, H., Sugita, S., & Cavender-Bares, J. (2011). Southward Pleistocene migration of Douglas-fir into Mexico: Phylogeography, ecological niche modeling, and conservation of ‘rear edge’ populations. New Phytologist, 189(4), 1185-1199. doi: https://doi.org/10.1111/j.1469-8137.2010.03559.x

Hansen, J., Sato, M., & Ruedy, R. (2012). Perception of climate change. Proceedings of the National Academy of Sciences, 109(37), E2415-E2423. doi: https://doi.org/10.1073/pnas.1205276109

Hare, S. R., & Mantua, N. J. (2000). Empirical evidence for North Pacific regime shifts in 1977 and 1989. Progress in oceanography, 47(2), 103-145. doi: https://doi.org/10.1016/S0079-6611(00)00033-1

Holmes, R. L. (1983). Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bulletin, 43, 69-78.

Instituto Mexicano de Tecnología del Agua (IMTA). (2013). Extractor Rápido de Información Climatológica III (ERIC) version 3.2. Jiutepec, Morelos, México: Author.

Jenkins, G. M., & Watts, D. G. (1968). Spectral analysis and its applications. San Francisco, USA: Holden-Day.

Matisons, R., Elferts, D., & Brūmelis, G. (2013). Pointer years in tree-ring width and earlywood-vessel area time series of Quercus robur—Relation with climate factors near its northern distribution limit. Dendrochronologia, 31(2), 129-139. doi: https://doi.org/10.1016/j.dendro.2012.10.001

Meko, D. M. (1981). Application of Box-Jenkins methods of time series analysis to the reconstruction of drought from tree rings. USA: University of Arizona.

Monserud, R. A., & Marshall, J. D. (2001). Time-series analysis of δ13C from tree rings. Time trends and autocorrelation. Tree Physiology, 21, 1087-1102. 10.1093/treephys/21.15.1087

Návar, J. (2012). Modeling annual discharge of six Mexico’s northern rivers. Revista Ambiente & Água, 7, 36-50. doi: https://doi.org/10.4136/ambi-agua.705

Návar, J. (2015). Hydro-climatic variability and perturbations in mexico’s north-western temperate forests. Ecohydrology, 8, 1065-1072. doi: https://doi.org/10.1002/eco.1564

Návar, J., & Lizárraga-Mendiola, L. (2013). Hydro-climatic variability and forest fires in Mexico’s northern temperate forests. Geofísica internacional, 52, 5-20. doi: https://doi.org/10.1016/S0016-7169(13)71458-2

Nehrbass-Ahles, C., Babst, F., Klesse, S., Nötzli, M., Bouriaud, O., Neukom, R., . . . Frank, D. (2014). The influence of sampling design on tree-ring based quantification of forest growth. Global Change Biology, 20(9), 2867–2885. doi: https://doi.org/10.1111/gcb.12599

Pankrats, A. (1983). Forecasting with univariate Box-Jenkins models. Concepts and cases. USA: John Wiley and Sons.

Park, W. A., Allen, C. D., Macalady, A. K., Griffin, D., Woodhouse, C. A., Meko, D. M., . . . McDowell, N. G. (2013). Temperature as a potent driver of regional forest drought stress and tree mortality. Nature Clim. Change, 3(3), 292-297. doi: https://doi.org/10.1038/nclimate1693

Peñuelas, J., Canadell, J. G., & Ogaya, R. (2011). Increased water-use efficiency during the 20th century did not translate into enhanced tree growth. Global Ecology and Biogeography, 20(4), 597-608. doi: https://doi.org/10.1111/j.1466-8238.2010.00608.x

Poage, N. J., & Tappeiner, J. C. (2002). Long-term patterns of diameter and basal area growth of old-growth Douglas-fir trees in western Oregon. Canadian Journal of Forest Research, 32(7), 1232-1243. doi: https://doi.org/10.1139/x02-045

Priestly, M. B. (1981). Spectral analysis and time series. New York, USA: Academic Press Inc.

Robinson, W. J., & Evans, R. (1980). A microcomputer-based tree-ring measuring system. Tree-Ring Bulletin, 40, 59- 64. http://arizona.openrepository.com/arizona/handle/10150/260443

Roden, J. S., Johnstone, J. A., & Dawson, T. E. (2011). Regional and watershed-scale coherence in the stable-oxygen and carbon isotope ratio time series in tree rings of Coast Redwood (Sequoia sempervirens). Tree-Ring Research, 67(2), 71-86. doi: https://doi.org/10.3959/2010-4.1

Rubino, D. L., & McCarthy, B. C. (2000). Dendroclimatological analysis of white oak (Quercus alba L., Fagaceae) from an old-growth forest of Southeastern Ohio, USA. Journal of the Torrey Botanical Society, 127(3), 240-250. doi: https://doi.org/10.2307/3088761

Secretaría de Medio Ambiente y Recursos Naturales (2010). Norma Oficial Mexicana NOM-059-SEMARNAT-2010. Protección ambiental, especies nativas de flora y fauna silvestres de México, categorías de riesgo y especificaciones para su inclusión, exclusión o cambio, y lista de especies en riesgo. México: Diario Oficial de la Federación.

Silva, L. C. R., Anand, M., & Leithead, M. D. (2010). Recent widespread tree growth decline despite increasing atmospheric CO2. PLoS ONE, 5(7), e11543. doi: https://doi.org/10.1371/journal.pone.0011543

Silva, L. C. R., Gómez-Guerrero, A., Doane, T. A., & Horwath, W. R. (2015). Isotopic and nutritional evidence for species- and site-specific responses to N deposition and elevated CO2 in temperate forests. Journal of Geophysical Research: Biogeosciences, 120(6), 1110-1123. doi: https://doi.org/10.1002/2014JG002865

Skovsgaard, J. P., & Vanclay, J. K. (2008). Forest site productivity: A review of the evolution of dendrometric concepts for even-aged stands. Forestry, 81(1), 13-31. doi: https://doi.org/10.1093/forestry/cpm041

Soulé, P. T., & Knapp, P. A. (2015). Analyses of intrinsic water-use efficiency indicate performance differences of ponderosa pine and douglas-fir in response to CO2 enrichment. Journal of Biogeography, 42,144-155. doi: https://doi.org/10.1111/jbi.12408

Stahle, D. W., Cook, E. R., Diaz, J. V., Fye, F. K., Burnette, D. J., Griffin, D., . . . Heim, R. R. (2009). Early 21st- Century drought in Mexico. Eos, Transactions American Geophysical Union, 90(11), 89-90. doi: https://doi.org/10.1029/2009EO110001

Stahle, D. W., Diaz, J. V., Burnette, D. J., Paredes, J., Heim, R., Fye, F. K., . . . Stahle, D. K. (2011). Major Mesoamerican droughts of the past millennium. Geophysical Research Letters, 38(5), 1-4. doi: https://doi.org/10.1029/2010GL046472

Statistical Analysis System (SAS). (2011). SAS/ETS 9.3 User’s Guide. Cary, NC, USA: SAS Institute Inc.

Stokes, M. A., & Smiley, T. L. (1968). An introduction to tree-ring dating. Chicago, USA: University of Arizona Press.

Swetnam, T. W., & Lynch, A. M. (1993). Multicentury, regional-scale patterns of western spruce budworms outbreaks. Ecological Monographis, 63(4), 399-424. doi: https://doi.org/10.2307/2937153

Trenberth, K. E. (1997). The definition of el nino. Bulletin of the American Meteorological Society, 78(12), 2771- 2777. http://www.cgd.ucar.edu/staff/trenbert/trenberth.papers/i1520-0477-078-12-2771.pdf

Tsay, R. S., & Tiao, G. C. (1984). Consistent estimates of autoregressive parameters and extended sample autocorrelation function for stationary and nonstationary ARMA models. Journal of the American Statistical Association, 79(385), 84-96. doi: https://doi.org/10.2307/2288340

Villanueva-Diaz, J., Cerano-Paredes, J., Stahle, D. W., Constante-García, V., Vázquez-Salem, L., Estrada-Ávalos, J., & Benavides-Solorio, J. D. (2010). Árboles longevos de México. Revista Mexicana de Ciencias Forestales, 1(2), 1-23. http://www.redalyc.org/articulo.oa?id=63438955002

Weiner, J., & Thomas, S. C. (2001). The nature of tree growth and the “age-related decline in forest productivity”. Oikos, 94(2), 374-376. doi: https://doi.org/10.1034/j.1600-0706.2001.940219.x

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2016 Revista Chapingo Serie Ciencias Forestales y del Ambiente