Revista Chapingo Serie Ciencias Forestales y del Ambiente
Allometric equations commonly used for estimating shoot biomass in short-rotation wood energy species: a review
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF
ePUB

Keywords

Woody crops
allometric model
bioenergy
Scopus
Web of Science

How to Cite

Ríos-Saucedo, J. C., Acuña-Carmona, E. ., Cancino-Cancino, J., Rubilar-Pons, R., Návar-Cháidez, J. de J., & Rosales-Serna, R. (2016). Allometric equations commonly used for estimating shoot biomass in short-rotation wood energy species: a review. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 22(2), 193–202. https://doi.org/10.5154/r.rchscfa.2015.05.022

Abstract

Wood energy crops in a short rotation coppice (SRC) commonly consist of single-stem tree individuals in the first short cycle, but from the second cycle onward numerous sprouts or shoots emerge from each stump, resulting in interesting challenges when estimating their biomass. The aim of this study was to identify species, rotation length and types of allometric models used to estimate biomass in SRC through a  detailed  search  of  the  scientific  journals  in  the  Scopus  and  Web  of  Science  databases. Among the most commonly used models to estimate biomass (y) is the typical exponential model,  which  has  the  following  predictors:  diameter  at  breast  height  (D)  (y=b0Db1), stem  basal diameter (Db) (y = b0Dbb1) and the combination of diameter at breast height squared by total height (D2H) ( y= b0 + b1 D2H) 1 D 2H), stands out. The genera with the largest number of different models were Populus, Salix and Eucalyptus. The first two are the most studied. The rotation length used in the crops studied ranged from one to 15 years.

https://doi.org/10.5154/r.rchscfa.2015.05.022
PDF
ePUB

References

Al Afas, N. A., Marron, N., Van Dongen, S., Laureysens, I., & Ceulemans, R. (2008). Dynamics of biomass production in a poplar coppice culture over three rotations (11 years). Forest Ecology and Management, 255(5-6), 1883-1891.

Allen, C. B., Will, R. E., & Jacobson, M. A. (2005). Production efficiency and radiation use efficiency of four tree species receiving irrigation and fertilization. Forest Science, 51(6), 556-569.

Avohou, T. H., Houehounha, R., Glele-Kakai, R., Assogbadjo, A. E., & Sinsin, B. (2011). Firewood yield and profitability of a traditional Daniellia oliveri short-rotation coppice on fallow lands in Benin. Biomass and Bioenergy, 35(1), 562-571. doi: https://doi.org/10.1016/j.biombioe.2010.10.030

Bogdan, S., Kajba, D., & Katičić, I. (2006). Biomass production in willow clonal tests on marginal sites in Croatia. South-east European forestry, 5(2), 261-275.

Böhm, C., Quinkenstein, A., & Freese, D. (2011). Yield prediction of young black locust (Robinia pseudoacacia L.) plantations for woody biomass production using allometric relations. Annals of Forest Research, 54(2), 215-227.

Bouvet, A., Nguyen-The, N., & Melun, F. (2013). Nutrient concentration and allometric models for hybrid eucalyptus planted in France. Annals of Forest Science, 70(3), 251-260. doi: https://doi.org/10.1007/s13595-012-0259-3

Brahim, M. B., Gavaland, A., & Cabanettes, A. (2000). Generalized allometric regression to estimate biomass of Populus in short-rotation coppice. Scandinavian Journal of Forest Research, 15(2), 171-176.

Camps, Manuel, & Marcos, Francisco. (2002). Los biocombustibles. Madrid, España: Ediciones Mundi-Prensa.

Clutter, Jerome L, Fortson, James C, Pienaar, Leon V, Brister, Graham H, & Bailey, Robert L. (1983). Timber management: a quantitative approach: John Wiley & Sons, Inc.

Davis, A. A., & Trettin, C. C. (2006). Sycamore and sweetgum plantation productivity on former agricultural land in South Carolina. Biomass and Bioenergy, 30(8-9), 769-777.

Fajman, M., Palát, M., & Sedlák, P. (2009). Estimation of the yield of poplars in plantations of fast-growing species within current results. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 57(2), 25-36.

Finney, D. J. (1941). On the distribution of a variate whose logarithm is normally distributed. Supplement to the Journal of the Royal Statistical Society, 155-161.

Fischer, M., Trnka, M., Kučera, J., Fajman, M., & Žalud, Z. (2011). Biomass productivity and water use relation in short rotation poplar coppice (Populus nigra × P. maximowiczii) in the conditions of Czech Moravian Highlands. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 59(6), 141-152. doi: https://doi.org/10.1029/2007JG000663

Guidi, W., Piccioni, E., Ginanni, M., & Bonari, E. (2008). Bark content estimation in poplar (Populus deltoides L.) short-rotation coppice in Central Italy. Biomass & Bioenergy, 32(6), 518-524. doi: https://doi.org/10.1016/j.biombioe.2007.11.012

Hauk, Sebastian, Knoke, Thomas, & Wittkopf, Stefan. (2014). Economic evaluation of short rotation coppice systems for energy from biomass—A review. Renewable and Sustainable Energy Reviews, 29, 435-448. doi: https://doi.org/doi: https://doi.org/10.1016/j.rser.2013.08.103

Henry, M., Picard, N., Trotta, C., Manlay, R. J., Valentini, R., Bernoux, M., & Saint-André, L. (2011). Estimating tree biomass of sub-Saharan African forests: A review of available allometric equations. Silva Fennica, 45(3), 477-569.

Herve, C., & Ceulemans, R. (1996). Short-rotation coppiced vs non-coppiced poplar: A comparative study at two different field sites. Biomass and Bioenergy, 11(2-3), 139-150.

Hoogwijk, Monique, Faaij, André, Eickhout, Bas, de Vries, Bert, & Turkenburg, Wim. (2005). Potential of biomass energy out to 2100, for four IPCC SRES land-use scenarios. Biomass and Bioenergy, 29(4), 225-257. doi: https://doi.org/10.1016/j.biombioe.2005.05.002

Laureysens, I., Bogaert, J., Blust, R., & Ceulemans, R. (2004). Biomass production of 17 poplar clones in a short-rotation coppice culture on a waste disposal site and its relation to soil characteristics. Forest Ecology and Management, 187(2-3), 295-309. doi: https://doi.org/10.1016/j.foreco.2003.07.005

Liberloo, M., Calfapietra, C., Lukac, M., Godbold, D., Luo, Z. B., Polle, A., Ceulemans, R. (2006). Woody biomass production during the second rotation of a bio-energy Populus plantation increases in a future high CO2 world. Global Change Biology, 12(6), 1094-1106. doi: https://doi.org/10.1029/2003GB002127

Liberloo, M., Dillen, S. Y., Calfapietra, C., Marinari, S., Zhi, B. L., De Angelis, P., & Ceulemans, R. (2005). Elevated CO2 concentration, fertilization and their interaction: Growth stimulation in a short-rotation poplar coppice (EUROFACE). Tree Physiology, 25(2), 179-189.

Morhart, C., Sheppard, J., & Spiecker, H. (2013). Above ground leafless woody biomass and nutrient content within different compartments of a P. maximowicii x P. trichocarpa poplar clone. Forests, 4(2), 471-487. doi: https://doi.org/10.3390/f4020471

Mugasha, Wilson Ancelm, Eid, Tron, Bollandsås, Ole Martin, Malimbwi, Rogers Ernest, Chamshama, Shabani Athumani Omari, Zahabu, Eliakimu, & Katani, Josiah Zephania. (2013). Allometric models for prediction of above-and belowground biomass of trees in the miombo woodlands of Tanzania. Forest Ecology and Management, 310, 87-101.

Muukkonen, P., & Mäkipää, R. (2006). Erratum: Biomass equations for European trees: Addendum (Silva Fennica (2005) 4 (63)). Silva Fennica, 40(4), 763-773.

Návar, José. (2009). Biomass component equations for Latin American species and groups of species. Annals of Forest Science, 66(2), 208-208. doi: https://doi.org/10.1051/forest/2009001

Razakamanarivo, R. H., Razakavololona, A., Razafindrakoto, M. A., Vieilledent, G., & Albrecht, A. (2012). Below-ground biomass production and allometric relationships of eucalyptus coppice plantation in the central highlands of Madagascar. Biomass & Bioenergy, 45, 1-10. doi: https://doi.org/10.1016/j.biombioe.2011.01.020

REN21. (2013). Renewables 2013 Global Status Report. Paris, Francia: Renewable Energy Policy Network for the 21st Century (REN21).

Rock, J. (2007). Suitability of published biomass equations for aspen in Central Europe - Results from a case study. Biomass & Bioenergy, 31(5), 299-307. doi: https://doi.org/10.1016/j.biombioe.2007.01.003

Röhle, H., Hartmann, K. U., Gerold, D., Steinke, C., & Schröder, J. (2006). Biomass functions for short rotation forestry. Aufstellung von Biomassefunktionen für Kurzumtriebsbestände, 177(10-11), 178-187.

Sevel, L., Nord-Larsen, T., & Raulund-Rasmussen, K. (2012). Biomass production of four willow clones grown as short rotation coppice on two soil types in Denmark. Biomass and Bioenergy, 46, 664-672.

Sixto, H, Hernández, M.J., Barrio, M, Carrasco, J, & Cañellas, I. (2008). Plantaciones del género Populus para la producción de biomasa con fines energéticos: revisión. Forest Systems, 16(3), 277-294.

Telenius, B. F. (1999). Stand growth of deciduous pioneer tree species on fertile agricultural land in southern Sweden. Biomass and Bioenergy, 16(1), 13-23. doi: https://doi.org/10.1016/s0961-9534(98)00073-7

Uri, V., Aosaar, J., Varik, M., & Kund, M. (2010). The growth and production of some fast growing deciduous tree species stands on abandoned agricultural land. Forestry Studies, 52, 18-29.

Vande Walle, I., Van Camp, N., Van de Casteele, L., Verheyen, K., & Lemeur, R. (2007). Short-rotation forestry of birch, maple, poplar and willow in Flanders (Belgium) I-Biomass production after 4 years of tree growth. Biomass and Bioenergy, 31(5), 267-275.

Verwijst, T., & Telenius, B. (1999). Biomass estimation procedures in short rotation forestry. Forest Ecology and Management, 121(1-2), 137-146. doi: https://doi.org/10.1016/s0378-1127(98)00562-3

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2016 Revista Chapingo Serie Ciencias Forestales y del Ambiente