Revista Chapingo Serie Ciencias Forestales y del Ambiente
Taper model by type of soil for Pinus radiata in the regions of Biobío and the Araucanía, Chile
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF
ePUB

Keywords

Generalized model
volume
biomass
forest management
wood optimization

How to Cite

Rodríguez-Toro, R.-T., Rubilar-Pons, R., Muñoz-Sáez, F. E. ., Cartes-Rodríguez, E. ., Acuña-Carmona, E. ., & Cancino-Cancino, J. (2016). Taper model by type of soil for Pinus radiata in the regions of Biobío and the Araucanía, Chile. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 22(2), 203–220. https://doi.org/10.5154/r.rchscfa.2015.05.021

Abstract

A new generalized taper model for Pinus radiata is presented in some types of soils. This is a non-linear model fitted with data from 264 trees aged between 15 and 31 years, harvested in 27 stands located in 11 communes from the Biobío and the Araucanía, Chile, in three different types of soils, i.e. volcanic sand, volcanic ash and marine sediments. The generalization of the model was achieved by incorporating stand state variables, and the subsequent simplification of it incorporating site variability in its parameters. The volume function obtained from the numerical integration of the taper model predicts over 97% of the variation in stem volume without bark estimated by the formula of Smalian in the three types of soils.

https://doi.org/10.5154/r.rchscfa.2015.05.021
PDF
ePUB

References

Akaike, H. (1974). A new look at the statistical model identification. Automatic Control, IEEE Transactions on, 19(6), 716-723. doi: https://doi.org/10.1109/TAC.1974.1100705

Allen, P. (1991). Polynomial taper equation for Pinus caribaea. New Zealand Journal of Forestry Science, 21(2/3), 194-205. http://www.scionresearch.com/__data/assets/pdf_file/0020/17651/NZJFS212_31991ALLEN194_205.pdf

Bruce, D. , Curtis, R. , & Vancoevering, C. (1968). Development of a system of taper and volume tables for red alder. Forest Science, 14(3), 339-350. http://www.ingentaconnect.com/content/saf/fs/1968/00000014/00000003/art00021

Centro de Ciencia del Clima y la Resiliencia (CR2). (2015). Datos de Precipitación 1940-2013. http://www.cr2.cl/recursos-y-publicaciones/bases-de-datos/datos-de-precipitacion/

Cao, Q., Burkhart, H., & Max, T. (1980). Evaluation of two methods for cubic-volume prediction of loblolly pine to any merchantable limit. Forest Science, 26(1), 71-80. http://www.ingentaconnect.com/content/saf/fs/1980/00000026/00000001/art00012

De Miguel, S., Mehtätalo, L., Shater, Z., Kraid, B., & Pukkala, T. (2012). Evaluating marginal and conditional predictions of taper models in the absence of calibration data. Canadian Journal of Forest Research, 42(7), 1383-1394. doi: https://doi.org/10.1139/x2012-090

Demaerschalk, J. (1972). Converting volume equations to compatible taper equations. Forest Science, 18(3), 241-245. http://www.ingentaconnect.com/content/saf/fs/1972/00000018/00000003/art00018

Demaerschalk, J. (1973). Integrated systems for the estimation of tree taper and volume. Canadian Journal of Forest Research, 3(1), 90-94. doi: https://doi.org/10.1139/x73-013

Diéguez, U., Barrio, M., Castedo, F., & Balboa, M. (2003). Estimación del diámetro normal y del volumen del tronco a partir de las dimensiones del tocón para seis especies forestales comerciales de Galicia. Investigación Agraria: Sistemas y Recursos Forestales, 12(2), 131-139. http://www.inia.es/gcontrec/pub/131-139-(127S2)-Estimacion_1059570355562.pdf

Gomat, H., Deleporte, P., Moukini, R., Mialounguila, G., Ognouabi, N., Saya, A., Saint, L. (2011). What factors influence the stem taper of Eucalyptus: growth, environmental conditions, or genetics? Annals of Forest Science, 68(1), 109-120. doi: https://doi.org/10.1007/s13595-011-0012-3

Hennig, C. (2003). Clusters, outliers, and regression: fixed point clusters. Journal of Multivariate Analysis, 86(1), 183-212. doi: https://doi.org/10.1016/s0047-259x(02)00020-9

Hjelm, B. (2013). Stem taper equations for poplars growing on farmland in Sweden. Journal of Forestry Research, 24(1), 15-22. doi: https://doi.org/10.1007/s11676-012-0270-4

Honorato, J. (2011). Modelos volumétricos fustales para Acrocarpus fraxinifolius Wight & Arn. en plantaciones agroforestales de la Sierra Norte de Puebla. Revista Mexicana de Ciencias Forestales, 2(6), 55-71. http://www.scielo.org.mx/pdf/remcf/v2n6/v2n6a6.pdf

Kichenassamy, S. (2015). Continued proportions and Tartaglia’s solution of cubic equations. Historia Mathematica. doi: https://doi.org/10.1016/j.hm.2015.03.004

Kozak, A., Munro, D., & Smith, J. (1969). Taper functions and their application in forest inventory. The Forestry Chronicle, 45(4), 278-283. doi: https://doi.org/10.5558/tfc45278-4

Lowell, K. (1986). A flexible polynomial taper equation and its suitability for estimating stem profiles and volumes of fertilized and unfertilized radiata pine trees. Australian Forest Research, 16(2), 165-174.

Lozada, J. (2010). Consideraciones metodológicas sobre los estudios de comunidades forestales. Revista Forestal Venezolana, 1(054). http://www.saber.ula.ve/bitstream/123456789/31647/1/ensayo2.pdf

Martínez, J., & Acosta, A. (2014). Estimación del diámetro, altura y volumen a partir del diámetro del tocón para Quercus laurina, en Ixtlán, Oaxaca, México. Madera y bosques, 20(1), 59-70. http://www.redalyc.org/articulo.oa?id=61730576006

Matovic, B., Koprivica, M., & Radonja, P. (2007). Generalized taper models for Norway spruce (Picea abies L. Karst.) in Bosnia and west Serbia. Allgemeine Forst und Jagdzeitung, 178(7/8), 150. http://rheinischesmuseumfuerphilologie.com/index.php?id=168

Max, T., & Burkhart, H. (1976). Segmented polynomial regression applied to taper equations. Forest Science, 22(3), 283-289. http://www.ingentaconnect.com/content/saf/fs/1976/00000022/00000003/art00011

Mead, D. (2013). Sustainable management of Pinus radiata plantations FAO (Ed.) Forestry paper 170 http://www.fao.org/3/a-i3274e.pdf

Newnham, R. (1992). Variable-form taper functions for four Alberta tree species. Canadian Journal of Forest Research, 22(2), 210-223. doi: https://doi.org/10.1139/x92-028

Parresol, B., (1998). Prediction and error of baldcypress stem volume from stump diameter. Southern Journal of Applied Forestry, 22(2), 69-73. http://www.ingentaconnect.com/content/saf/sjaf/1998/00000022/00000002/art00003

Parresol, B., Hotvedt, J., & Cao, Q. (1987). A volume and taper prediction system for bald cypress. Canadian Journal of Forest Research, 17(3), 250-259. doi: https://doi.org/10.1139/x87-042

Peters, R., Jobet, M., & Aguirre, S. (1985). Compendio de tablas auxiliares para el manejo de plantaciones de pino insigne INFOR (Ed.) Manual Nº 14 (pp. 133). http://biblioteca1.infor.cl:81/DATAFILES/14345-2.pdf

Quiñonez, G., De los Santos, H., Álvarez, J., & Velázquez, A. (2014). Sistema compatible de ahusamiento y volumen comercial para las principales especies de Pinus en Durango, México. Agrociencia, 48(5), 553-567 . http://www.scielo.org.mx/pdf/agro/v48n5/v48n5a8.pdf

Rachid, C., Mason, E., Woollons, R., & Resquin, F. (2014). Volume and taper equations for P. taeda (L.) and E. grandis (Hill ex. Maiden). Agrociencia Uruguay, 18(2), 47-60. http://www.scielo.edu.uy/pdf/agro/v18n2/v18n2a06.pdf

Real, P., & Moore, J. (1986). An individual tree system for douglas-fir in the inland north-west. USDA Forestry Service General Technical Report NC-120, 1037-1044.

Renteria, J., & Ramirez, H. (1998). Sistema de cubicacion para Pinus cooperi blanco mediante ecuaciones de ahusamiento en Durango. Revista Chapingo: Serie Ciencias Forestales y del Ambiente, 4(2), 315-321. http://www.chapingo.mx/revistas/phpscript/download.php?file=completo&id=MzI3NQ==

Rojo, A., Perales, X., Sánchez, F., Álvarez, J. G., & Von Gadow, K. (2005). Stem taper functions for maritime pine (Pinus pinaster Ait.) in Galicia (Northwestern Spain). European Journal of Forest Research, 124(3), 177-186. doi: https://doi.org/10.1007/s10342-005-0066-6

Santiago, W., De los Santos, H., Ángeles, G., Corral, J., Valdez, J., & Del Valle, D. (2014). Predicción del rendimiento maderable de Pinus patula Schl. et Cham. a través de modelos de distribución diamétrica. Agrociencia, 48(1), 87-101. http://www.scielo.org.mx/pdf/agro/v48n1/v48n1a6.pdf

SAS, Institute. (2009). Statistical Analysis System, Versión 9.2. Cary, North Carolina. http://support.sas.com/documentation/92/

Schlatter, J., & Gerding, V. (1995). Método de clasificación de sitios para la producción forestal, ejemplo en Chile. Bosque, 16(2), 13-20. http://mingaonline.uach.cl/pdf/bosque/v16n2/art02.pdf

Sharma, M., & Oderwald, R. (2001). Dimensionally compatible volume and taper equations. Canadian Journal of Forest Research, 31(5), 797-803. doi: https://doi.org/10.1139/x01-005

Sharma, M., & Zhang, S. (2004). Variable-exponent taper equations for jack pine, black spruce, and balsam fir in eastern Canada. Forest Ecology and Management, 198(1), 39-53. doi: https://doi.org/10.1016/j.foreco.2004.03.035

Tamarit, J., De los Santos, H., Alfrete, A., Valdez, J., Ramírez, H., & Guerra, V. (2014). Sistema de cubicación para árboles individuales de Tectona grandis Lf mediante funciones compatibles de ahusamiento-volumen. Revista Mexicana de Ciencias Forestales, 5(21), 57-75. http://revistas.inifap.gob.mx/index.php/Forestales/article/view/3212/2637

Thomas, C., & Parresol, B. (1991). Simple, flexible, trigonometric taper equations. Canadian Journal of Forest Research, 21(7), 1132-1137. doi: https://doi.org/10.1139/x91-157

Valenti, M., & Cao, Q. (1986). Use of crown ratio to improve loblolly pine taper equations. Canadian Journal of Forest Research, 16(5), 1141-1145. doi: https://doi.org/10.1139/x86-201

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2016 Revista Chapingo Serie Ciencias Forestales y del Ambiente