Revista Chapingo Serie Ciencias Forestales y del Ambiente
Nonlinear mixed effect models for predicting relationships between total height and diameter of oriental beech trees in Kestel, Turkey
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF

Keywords

Individual tree height–diameter
modeling
random parameter
calibration

How to Cite

Ercanli, I. (2015). Nonlinear mixed effect models for predicting relationships between total height and diameter of oriental beech trees in Kestel, Turkey. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 21(2), 185–202. https://doi.org/10.5154/r.rchscfa.2015.02.006

Abstract

Statistical nonlinear mixed effect models were used to predict relationships between the total height and diameter at breast height of individual trees in Oriental beech (Fagus orientalis Lipsky) stands in Kestel, Bursa, Northwestern Turkey. 124 sample plots were selected to represent various stand conditions such as site quality, age, and stand density. Nine generalized nonlinear height–diameter models were fitted and evaluated based on Akaike’s information criterion, Schwarz’s Bayesian Information Criterion (BIC), Root Mean Square Error (RMSE), Absolute Bias and Adjusted Coefficient of Determination (R2adj). The nonlinear Schnute’s model was selected as the best predictive model. The height–diameter model based on the nonlinear mixed effect modeling approach accounted for 90.6 % of the total variance in height–diameter relationships and root mean square error (RMSE) values of 1.48 m. Various sampling scenarios that differed in sampling design and size of the selected sub-sample trees from the validation data set revealed that four randomly selected sub-sample trees in a given plot produced the best predictive results (43.3 % reduction of the sum of square errors, 98.4 % reduction of absolute bias, and 36.9 % reduction of the RMSE) in relation to the fixed effect predictions.

https://doi.org/10.5154/r.rchscfa.2015.02.006
PDF

References

Adame, P., del Río, M., & Cañellas, I. (2008). A mixed nonlinear height–diameter model for pyrenean oak (Quercus pyrenaica Willd.). Forest Ecology and Management, 256, 88–98. doi: https://doi.org/10.1016/j.foreco.2008.04.006

Bredenkamp, B. V., & Gregoire, T. G. (1988). A forestry application of Schnute’s generalized growth function. Forest Science, 34, 790–797.

Budhathoki, C. B., Lynch, T. B., & Guldin, J. M. (2008). A mixed-effects model for dbh-height relationship of shortleaf pine (Pinus echinata Mill.). South Journal of Applied Forest, 32, 5–11. http://www.srs.fs.usda.gov/pubs/31430

Calama, R., & Montero, G. (2004). Interregional nonlinear height–diameter model with random coefficients for stone pine in Spain. Canadian Journal of Forest Research, 34, 150–163. doi: https://doi.org/10.1139/X03-199

Castedo, D., F., Diéguez-Aranda, U., Barrio, M., Sánchez, M., & von Gadow, K. (2006). A generalized height–diameter model including random components for radiata pine plantations in northeastern Spain. Forest Ecology and Management, 229, 202–213. doi: https://doi.org/10.1016/j.foreco.β2006.04.028

Crecente-Campo, F., Tomé, M., Soares, P., & Diéguez-Aranda, U. (2010). A generalized nonlinear mixed-effects height–diameter model for Eucalyptus globulus L. in northwestern Spain. Forest Ecology and Management, 259, 943–952. doi: https://doi.org/10.1016/j.foreco.2009.11.036

Eichhorn, F. (1902). Ertragstafeln für die Weißtanne. Berlin, Germany: Verlag Julius Springer.

Gregoire, T. G. (1987). Generalized error structure for forestry yield models. Forest Science, 33, 423–444.

Huang, S., Titus, S. J., & Wiens, D. P. (1992). Comparison of nonlinear height-diameter functions for major Alberta tree species. Canadian Journal of Forest Research, 22, 1297–1304. http://www.math.ualberta.ca/~wiens/home%20page/pubs/treemodels.pdf

Huang, S., Price, D., & Titus, S. J. (2000). Development of ecoregion-based height– diameter models for white spruce in boreal forests. Forest Ecology and Management, 129, 125–141. doi: https://doi.org/10.1016/S0378-1127(99)00151-6

Huang, S., Meng, S. X., & Yang, Y. (2009). Using nonlinear mixed model technique to determine the optimal tree height prediction model for black spruce. Modern Applied Science, 3, 3–18. http://ccsenet.org/journal/index.php/mas/article/view/1240

Hui, G. Y., & von Gadow, K. (1993). Zur entwicklung von einheitshöhenkurven am beispel der baumartcunninghamia lanceolata. Allg Forst Jagdztg, 164, 218–220.

Laar, A., & Akça, A. (1997). Forest mensuration. Göttingen, Germany: Cuvillier Verlag.

Lappi, J. (1991). Calibration of height and volume equations with random parameters. Forest Science, 37, 781–801.

Lappi, J. (1997). A longitudinal analysis of height/diameter curves. Forest Science, 43, 555–570.

Lei, Y., & Parresol, B. R. (2001). Remarks on height-diameter modeling. USA: Southern Research Station, U.S. Department of Agriculture, Forest Service. http://www.srs.fs.fed.us/pubs/rn/rn_srs010.pdf

Lei, Y., & Zhang, S. Y. (2006). Comparison and selection of growth models using the Schnute model. Journal of Forest Science, 52, 188–196. http://www.agriculturejournals.cz/publicFiles/55095.pdf

Loetsch, F., Zöher, F., & Haller, K. (1973). Forest inventory. München: BLV.

Lynch, T. B., Hitch, K. L., Huebschmann, M. M., & Murphy, P. A. (1999). An individual tree growth and yield prediction system for even-aged natural shortleaf pine forests. South Journal of Applied Forest, 23, 203–211. http://www.srs.fs.usda.gov/pubs/1939

Martin, F. C., & Flewelling, J. W. (1998). Evaluation of tree height prediction models for stand inventory. Western Jornal of Applied Forest, 13, 109–119.

Mehtätalo, L. (2004). A longitudinal height–diameter model for Norway spruce in Finland. Canadian Journal of Forest Research, 34, 131–140. doi: https://doi.org/10.1139/x03-207

Meyer, H. A. (1940). A mathematical expression for height curves. Journal of Forest, 38, 415–420.

Nanos, N., Calama, R., Montero, G., & Gil, L. (2004). Geostatistical prediction of height/diameter models. Forest Ecology and Management, 195, 221–235. doi: https://doi.org/10.1016/j.foreco.2004.02.031

Paulo, J. A., Tomé, J., & Tomé, M. (2011). Nonlinear fixed and random generalized height–diameter models for Portuguese cork oak stands. Annals of Forest Science, 68, 295–309. doi: https://doi.org/10.1007/s13595-011-0041-y

Pinheiro, J. C., & Bates, D. M. (2000). Mixed effects models in S and S-Plus. New York, USA: Springer-Verlag.

Prodan, M. (1965). Holzmesslehre. Frankfurt, Germany: Saurländers Verlag.

Richards, F. J. A. (1959). Flexible growth function for empirical use. Journal of Experimental Botany,10, 290– 300. doi: https://doi.org/10.1093/jxb/10.2.290

Statistical Analysis System (SAS Institute). (2004). SAS/STAT 9.1 User’s Guide: Statistics, version 9.1. Cary, NC, USA: Autor.

Sánchez-González, M., Cañellas, I., & Montero, G. (2007). Generalized height-diameter and crown diameter prediction models for cork oak forests in Spain. Investigación Agraria: Sistemas y Recursos Forestales, 16, 76– 88. http://www.inia.es/gcontrec/pub/076-088-%285706%29-Generalized_1175075895515.pdf

Schmidt, M., Kiviste, A., & von Gadow, K. A. (2010). A spatially explicit height–diameter model for Scots pine in Estonia. European Journal of Forest Research, 23, 1–13. doi: https://doi.org/10.1007/s10342-010-0434-8

Schnute, J. (1981). A versatile growth model with statistically stable parameters. Canadian Journal of Fisheries and Aquatic Sciences, 38, 1128–1140. doi: https://doi.org/10.1139/f81-153

Searle, S. R., Casella, G., & McCulloch, C. E. (1992). Variance components. USA: Wiley.

Sharma, M., & Parton, J. (2007). Height–diameter equations for boreal tree species in Ontario using a mixed-effects modeling approach. Forest Ecology and Management, 249, 187–198. doi: https://doi.org/10.1016/j.foreco.2007.05.006

Soares, P., & Tomé, M. (2002). Height–diameter equation for first rotation eucalypt plantations in Portugal. Forest Ecology and Management, 166, 99–109. doi: https://doi.org/10.1016/S0378-1127(01)00674-0

West, P. W., Ratkowsky, D. A., & Davis, A. W. (1984). Problems of hypothesis testing of regressions with multiple measurements from individual sampling units. Forest Ecology and Management, 7, 207–224. doi: https://doi.org/10.1016/0378-1127(84)90068-9

White, H. (1980). A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica, 48, 817–838. http://www.aae.wisc.edu/aae637/handouts/whites_hetero_estimator.pdf

Zhang, L. (1997). Cross-validation of non-linear growth functions for modelling tree height–diameter relationships. Annals of Botany, 79, 251–257. doi: https://doi.org/10.1006/anbo.1996.0334

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2015 Revista Chapingo Serie Ciencias Forestales y del Ambiente