Revista Chapingo Serie Ciencias Forestales y del Ambiente
The color of urban dust as an indicator of contamination by potentially toxic elements: the case of Ensenada, Baja California, Mexico
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF

Keywords

Color indices
redness index
index
saturation index
hue index

How to Cite

Cortés, J. L., Bautista, F. ., Quintana, P. ., Aguilar, D. ., & Goguichaishvili, A. (2015). The color of urban dust as an indicator of contamination by potentially toxic elements: the case of Ensenada, Baja California, Mexico. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 21(3), 255–266. https://doi.org/10.5154/r.rchscfa.2015.02.003

Abstract

Contamination by potentially toxic elements (PTE) is not periodically evaluated, given that the chemical analyses have a high cost. The ashes and combustion fumes give the ground a dark color, which could serve as a proxy indicator. In this study, a methodology was designed to prove the use of the color of urban dust as an indicator of contamination by PTE, and the most contaminated color was identified. 86 dust samples from Ensenada, Baja California were analyzed. The color of the samples was measured and the color indices (CI) were calculated using the RGB system. Nickel (Ni), Copper (Cu), Zinc (Zn), Lead (Pb), Rubidium (Rb), Vanadium (V), Strontium (Sr), and Yttrium (Y) were analyzed through x-ray fluorescence methods. The samples were grouped by color using the Munsell tables; the groups were validated with a discriminant analysis using the color indices. The multiple regressions indicated that there exists a relation between the CI and the PTE. The averages of the analyzed elements in the samples grouped by color were different (Kruskal-Wallis, < 0.05). Gray dust contains higher concentrations of Pb, Cu, Zn and Ni. The color indices of urban dust can be considered a proxy methodology given their low cost, speed and reliability.

https://doi.org/10.5154/r.rchscfa.2015.02.003
PDF

References

Aguilar, B., Mejía, V., Goguichaishvili, A., Escobar J., Bayona G., Bautista, F., Morales, C. J., & Ihl, T. (2013a). Reconnaissance environmental magnetic study of urban soils, dust and leaves from Bogotá, Colombia. Studia Geophysica et Geodaetica, 57, 741–754. doi: https://doi.org/10.1007/s11200-012-068

Aguilar, B., Bautista, F., Goguichaishvili, A., Quintana, P., Carvallo, C., & Battu, J. (2013b). Rock-magnetic properties of topsoils and urban dust from Morelia (>800,000 inhabitants), México: Implications for anthropegenic pollution monitoring in mediumsize cities. Geofisica Internacional, 52(2), 121–133. Obtenido de http://www.redalyc.org/articulo.oa?id=56826168003

Aguilar, B., Bautista, F., Goguitchaichvili, A., & Morton, O. (2011). Magnetic monitoring of top soils of Merida (Southern Mexico). Studia Geophysica et. Geodaetica,55(2), 377–388. doi: https://doi.org/10.1007/s11200-011-0021-6

Aiken, L. S., & West, S. G. (1991). Multiple regression: Testing and interpreting interactions. California, USA: Sage.

Bautista, F., Cejudo-Ruiz, R., Aguilar-Reyes, B., & Gogichaishvili, A. (2014). El potencial del magnetismo en la clasificación de suelos: Una revisión. Boletín de la Sociedad Geológica Mexicana, 66(2), 365–376. Obtenido de http://boletinsgm.igeolcu.unam.mx/bsgm/vols/epoca04/6602/%2811%29Bautista.pdf

Beckhoff, B., Kanngießer, B., Langhoff, N., Wedell, R., & Wolff, H. (2007). Handbook of practical X-ray f luorescence analysis. Berlin, Germany: Springer.Brooks, F. A. (1952). Atmospheric radiation and its reflection from the ground. Journal of Meteorology, 9(1), 41–52.doi: https://doi.org/10.1175/1520-69(1952)009<0041:ARAIRF>2.0.CO;2

Dobos, R. R., Ciolkosz, E. J., & Waltman, W. J. (1990). The effect of organic carbon, temperature, time, and redox conditions on soil color. Soil Science, 150(2), 506–512.

Domínguez, S. J. M., Román, G. A. D., Prieto, G. F., & Acevedo, S. O. (2012). Sistema de notación Munsell y CIELab como herramienta para evaluación de color en suelos. Revista mexicana de ciencias agrícolas, 3(1),141–155. Obtenido de http://www.scielo.org.mx/pdf/remexca/v3n1/v3n1a10.pdf

Guagliardi, I., Cicchella, D., & De Rosa, R. (2012). A geostatistical approach to assess concentration and spatial distribution of heavy metals in urban soils. Water, Air, & Soil Pollution, 223(9), 5983–5998. doi:10.1007/s11270-012-1333-z

Ihl, T., Bautista, F., Cejudo, R., Delgado, C., Quintana, P., Aguilar, D., & Goguitchaichvili, A. (2015). Concentration of toxic elements in topsoils of the metropolitan area of México City: A spatial analysis usiong ordinari Kriging and indicator Kriging. Revista Internacional de Contaminacion Ambiental, 31(1), 47–62. Obtenido de http://www.revistas.unam.mx/index.php/rica/article/view/38711

IUSS Working Group WRB (2014). World reference base for soil resources. Rome: FAO. Kojima, M. (1958). Relationship between size of soil particles and soil colors. Soil and Plant Food, 3(4), 204.

Kruskal, W. H., & Wallis, W. A. (1952). Use of ranks in one-criterion variance analysis. Journal of the American Statistical Association, 47(260), 583–621. doi: https://doi.org/10.2307/2280779 doi: https://doi.org/10.2307/2280779

Kumaravel, V., Sangode, S. J., Siva, N., & Kumar, R. (2010). Interrelation of magnetic susceptibility, soil color and elemental mobility in the Pliocene–Pleistocene Siwalik paleosol sequences of the NW Himalaya, India. Geoderma, 154(3), 267–280. doi: https://doi.org/10.1016/j.geoderma.2009.10.013

Leirena-Alcocer, J. L., & Bautista, F. (2014). Patrones de asociación entre la cobertura vegetal y la calidad del suelo en el matorral costero de la reserva Ría Lagartos, Yucatán. CienciaUAT, 8(2), 44–53. Obtenido de http://www.revistaciencia.uat.edu.mx/index.php/CienciaUAT/article/view/297/160 http://www.revistaciencia.uat.edu.mx/index.php/CienciaUAT/article/view/297/160

Levin, N., Ben-Dor, E., & Singer, A. (2005). A digital camera as a tool to measure color indices and related properties of sandy soils in semi-arid environments. International Journal of Remote Sensing, 26(24), 5475–5492. doi: https://doi.org/10.1080/01431160500099444

Lévy, J., Varela, J., Calvo, A., & Rodríguez, M. (2003). Análisis multivariado para las ciencias sociales. Madrid, España: Pearson educación.

Lozano, R., & Bernal, J. P. (2005). Characterization of a new set of eight geochemical reference materials for XRF major and trace element analysis. Revista Mexicana de Ciencias Geológicas, 22(3), 329–344. Obtenido de http://satori.geociencias.unam.mx/22-3/%284%29Lozano.pdf

Madeira, J., Bedidi, A., Cervelle, B., Pouget, M., & Flay, N. (1997). Visible spectrometric indices of hematite (Hm) and goethite (Gt) content in lateritic soils: The application of a Thematic Mapper (TM) image for soil-mapping in Brasilia, Brazil. International Journal of Remote Sensing, 18(13), 2835–2852. doi: https://doi.org/10.1080/014311697217369

Matthias, A. D., Fimbres, A., Sano, E. E., Post, D. F., Accioly, L., Batchily, A. K., & Ferreira, L. G. (2000). Surface roughness effects on soil albedo. Soil Science Society of America Journal, 64(3), 1035–1041. doi: https://doi.org/10.2136/sssaj2000.6431035x

Munsell Color. (2000). Munsell soil color charts. Revised washable edition. MI, USA: GretagMacbeth Sabath, D. E., & Osorio, L. R. (2012). Medio ambiente y riñón: Nefrotoxicidad por metales pesados. Nefrología: Publicación oficial de la Sociedad Española de Nefrología, 32(3), 279–286. doi: https://doi.org/10.3265/Nefrologia.pre2012.Jan.10928

Sánchez-Marañón, M., Delgado, G., Delgado, R., Pérez, M. M., & Melgosa, M. (1995). Spectroradiometric and visual color measurements of disturbed and undisturbed soil samples. Soil science, 160(4), 291–303.

Schulze, D. G., Nagel, L. L., van Scoyoc, G. E., Henderson, T. L., Baumgardner, M. F., & Stott, D. E. (1993). Significance of organic matter in determining soil color. In J. M. 266 The color of dust as a contamination indicator Revista Chapingo Serie Ciencias Forestales y del Ambiente | Vol. XXI, núm. 3, septiembre-diciembre 2015. Bigham, & E. J. Ciolkosz (Eds.), Soil color (pp. 71–90, vol. 31). Madison, WI, USA: Soil Science Society of America. doi: https://doi.org/10.2136/sssaspecpub31.c4

Schwertmann, U. (1993). Relations between iron oxides, soil color, and soil formation. In J. M. Bigham, & E. J. Ciolkosz (Eds.), Soil color (pp. 51–69). Madison, WI, USA: Soil Science Society of America. doi: https://doi.org/10.2136/sssaspecpub31.c4

Statgraphics (1992). Statgraphics plus, version 5.1. Reference Manual, Manugistics. Rockville, MD: Statpoint Technologies, Inc.

Viscarra, R. R. A., Fouad, Y., & Walter, C. (2008). Using a digital camera to measure soil organic carbon and iron contents. Biosystems Engineering, 100(2), 149–159. doi: https://doi.org/10.1016/j.biosystemseng.2008.02.007

Wang, B., Xia, D., Yu, Y., Jia, J., & Xu, S. (2014). Detection and differentiation of pollution in urban surface soils using magnetic properties in arid and semi-arid regions of northwestern China. Environmental Pollution, 184, 335–346. doi: https://doi.org/10.1016/j.envpol.2013.08.024

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2015 Revista Chapingo Serie Ciencias Forestales y del Ambiente