Revista Chapingo Serie Ciencias Forestales y del Ambiente
Fragmentation effect in the leaf morphometry and environment of Quercus germana Schldl. & Cham. (Fagaceae) in Xalapa, Veracruz
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF

Keywords

Endemic species
phenotypic differentiation
environmental variables
morphological variation

How to Cite

Martínez-Munguía, A. ., Ortiz-Ceballos, G. C. ., Rebolledo-Camacho, V., Andrade-Torres, A., Iglesias-Andreu, L. G., & Octavio-Aguilar, P. . (2015). Fragmentation effect in the leaf morphometry and environment of Quercus germana Schldl. & Cham. (Fagaceae) in Xalapa, Veracruz. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 21(3), 267–280. https://doi.org/10.5154/r.rchscfa.2015.01.001

Abstract

Quercus germana is an endemic species from the cloud forest of MexicoThe selection pressure resulting from fragmentation and environmental changes suggests the presence of phenotypic differentiation. We evaluated the relationship between the environment and the leaf morphology of Q. germana at six sites in the area of Xalapa, Veracruz. Ten leafs of 30 specimens per site were collected. Ten leafs morphometric and seven environmental characteristics were measured and variance analyses were performed with a discriminant analysis. Additionally, UPGMA phylogenetic trees were constructed and the Mahalanobis distances were compared using a Mantel test to estimate the relationship between morphometry and the environment. The morphological variables that best separated the sites were mucrones, ribs and petiole size. Environmentally, the most discriminant variables were light, temperature and loss of humidity. The Mantel test did not show any relationship between the morphometric and the environmental differences (r = 0.090, = 0.3060), so there is not any association between the two. Because morphological differences were found in sub-populations despite of the short distance between them, these may be affected by fragmentation even without environmental influences.

https://doi.org/10.5154/r.rchscfa.2015.01.001
PDF

References

Álvarez, E. Á., Sánchez-González, A., & Granados-Sánchez, D. (2009). Análisis de la variación morfológica foliar en Quercus laeta Liebm. en el parque nacional Los Mármoles, Hidalgo, México. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 15(2), 87–93. Obtenido de http://www. chapingo.mx/revistas/forestales/contenido.php?id_ revista_numero=40

Bacilieri, R., Ducousso, A., & Kremer, A. (1995). Genetic, morphological, ecological and phenological differentiation between Quercus petraea (Matt.) Liebl. and Quercus robur L. in a mixed stand of northwest of France. Silvae Genetica, 44, 1-10. Obtenido de http://allgemeineforstundjagdzeitung.com/fileadmin/content/dokument/archiv/silvaegenetica/44_1995/44-1-1.pdf

Borazan, A., & Babaç, M. T. (2003). Morphometric leaf variation in oaks (Quercus) of Bolu, Turkey. Annales Botanici Fennici, 40, 233–242. Obtenido de http://www.annbot.net/PDF/anbf40/anbf40-233.pdf

Calagari, M., Modirrahmati, A. R., & Asadi, F. (2006). Morphological variation in leaf traits of Populus auphratica Oliv. Natural populations. International Journal of Agricultural and Biological Engineering, 8, 754–758. Obtenido de http://www.fspublishers.org/published_papers/14745_.pdf

Cardillo, E., & Bernal, C. J. (2006). Morphological response and growth of cork oak (Quercus suber L.) seedlings at different shade levels. Forest Ecology and Management, 222, 296–301. doi: https://doi.org/10.1016/j.foreco.2005.10.026

Comisión Nacional para el Desarrollo de los Pueblos Indígenas (CDI). 2004. Consultado 06-01-2014 en http://www.cdi.gob.mx/pnuma/c3_06.html

Dow, B. D., & Ashley, M. V. (1998). High levels of gene flow in bur oak revealed by paternity analysis using microsatellites. Journal of Heredity, 86, 62–70. doi: https://doi.org/10.1093/jhered/89.1.62

Excoffier, L. (2001). Analysis of population subdivision. In D. J. Balding, M. Bishop, & C. Cannings (Eds.) Handbook of statistical genetics (pp. 271–307). New York, USA: John

Wiley & Sons, Ltd. Fernández-M. J., & Sork, V. L. (2007). Genetic variation in fragmented forest stands of the Andean Oax Quercus humbodtii Bonpl. (Fagaceae). Biotropica, 39(1), 72–78. doi: https://doi.org/10.1111/j.1744-7429.2006.00217.x

González-Rodríguez, A., & Oyama, K. (2005). Leaf morphometric variation in Quercus affinis and Q.laurina (Fagaceae), two hybridizing Mexican red oaks. Botanical Journal of the Linnean Society, 147, 427–435. doi: https://doi.org/10.1111/j.1095-8339.2004.00394.x

Halloy, S. R. P., & Mark, A. F. (1996). Comparative leaf morphology spectra of plant communities in New Zealand, the Andes and the European Alps. Journal of the Royal Society of New Zealand, 26, 41–78. doi: https://doi.org/10.1080/03014223.1996.9517504

Hoff, C., & Rambal, S. (2003). An examination of the interaction between climate, soil and leaf area index in a Quercus ilex ecosystem. Annals of Forest Science, 60, 153–161. doi: https://doi.org/10.1051/forest:2003008

Hovenden, M. J., & Vander S. J. K. (2006). The response of leaf morphology to irradiance depends on altitude of origin in Nothofagus cunninghamii. New Phytologist, 169, 291–297. doi: https://doi.org/10.1111/j.1469-8137.2005.01585.x

Instituto Nacional de Estadística y Geografía (INEGI).Consultado 06-01-2012 en http://www.inegi.org.mx/geo/contenidos/mapadigital/

Li, C., Zhang, X., Liu, X., Luukkanen, O., & Berninger, F. (2006). Leaf morphological and physiological responses of Quercus aquifolioides along an altitudinal gradient. Silva Fennica, 40, 5–13. Obtenido en http://210.75.237.14/handle/351003/21866

Nikolic, N. P., Krstic, B. D., Pajevic, S. P., & Orlovic, S. S. (2006). Variability of leaf characteristics in different pedunculate oak genotypes (Quercus robur L.). Proceedings for Natural Sciences, Matica Srpska Novi Sad, 110, 95–105. doi: https://doi.org/10.2298/ZMSPN0611095N

Ponton, S., Dupoguey, J., & Dreyer, E. (2004). Leaf morphology as species indicator in seedlings of Quercus robur L. and Q. petrea (Matt.) Liebl.: Modulation by irradiance and growth flush. Annals of Forest Science, 61, 73–80. doi: https://doi.org/10.1051/forest:2003086

Royer, D. L., Wilf, P., Janesko, D. A., Kowalski, E. A., & Dilcher, D. L. (2005). Correlations of climate and plant ecology to leaf size and shape: Potential proxies for the fossil record. American Journal of Botany, 92, 1141–1151. doi: https://doi.org/10.3732/ajb.92.7.1141

Sack, L., Melcher, P. J., Liu, W. H., Middleton, E., & Pardee, T. (2006). How strong is intracanopy leaf plasticity in temperate deciduous trees? American Journal Botany, 93, 829–839. doi: https://doi.org/10.3732/ajb.93.6.829

Sáenz-Romero, C., Snively, A. E., & Linding-Cisneros, R. (2003). Conservation and restoration of pine forest genetic resources in Mexico. Silvae Genetica, 52, 233–237. Obtenido de: http://www.germanjournalofforestresearch.com/fileadmin/content/dokument/archiv/silvaegenetica/52_2003/52-5-6-233.pdf

StatSoft. (2004). STATISTICA, version 7.0. User guide and documention. Oklahoma, USA: Author. Tovar-Sánchez, E., & Oyama, K. (2004). Natural hybridization and hybrid zones between Quercus crassifolia and Quercus crassipes (Fagaceae) in México: Morphological and molecular evidence. American Journal of Botany, 91, 1352–1363. doi: https://doi.org/10.3732/ajb.91.9.1352

Uribe-Salas, D., Sáenz-Romero, C., Gonzáles-Rodríguez, A., Téllez-Valdéz, O., & Oyama, K. (2008). Foliar morphological variation in the white oak Quercus rugosa Née (Fagaceae) along a latitudinal gradient in Mexico: Potential implications for management and conservation. Forest Ecology and Management, 256, 2121–2126. doi: https://doi.org/10.1016/j.foreco.2008.08.002

Warren, Ch. R., Tausz, M., & Adams, M. A. (2005). Does rainfall explain variation in leaf morphology and physiology among populations of red ironbark (Eucalyptus sideroxylon subsp. tricarpa) grown in a common garden? Tree Physiology, 25, 1369–1378. doi: https://doi.org/10.1093/treephys/25.11.1369

Williams-Linera, G. (2002). Tree species richness complementarity, disturbance and fragmentation in a Mexican tropical montane cloud forest. Biodiversity Conservation, 11, 1825–1843. doi: https://doi.org/10.1023/A:1020346519085

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2015 Revista Chapingo Serie Ciencias Forestales y del Ambiente