Revista Chapingo Serie Ciencias Forestales y del Ambiente
Assisted migration of forest populations for adapting trees to climate change
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF
ePUB

Keywords

Genetic differentiation
suitable climatic habitat
adaptational lag
forest decline
reforestation

How to Cite

Sáenz-Romero, C., Lindig-Cisneros, R. A., Joyce, D. G., Beaulieu, J., St. Clair, J. B. ., & Jaquish, B. C. . (2016). Assisted migration of forest populations for adapting trees to climate change. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 22(3), 303–323. https://doi.org/10.5154/r.rchscfa.2014.10.052

Abstract

We present evidence that climatic change is an ongoing process and that forest tree populations are genetically differentiated for quantitative traits because of adaptation to specific habitats. We discuss in detail indications that the shift of suitable climatic habitat for forest tree species and populations, as a result of rapid climatic change, is likely to cause significant stresses to natural tree populations. Due to the physical limits of natural migration, tree populations will be unable to keep pace with the moving target that their suitable climatic habitat will become. The consequent decoupling between natural populations and the climate for which they are adapted, will likely cause large forest decline, a phenomenon that is already underway in several forests of the world. In order to accommodate climate change, what are our forest management options? What would be the consequences of inaction? We describe and discuss assisted migration, which is the physical realignment of natural populations to the climate for which they are adapted, by reforestation in sites where their suitable climate is predicted to occur in the future, as an active management option with the aim of maintaining healthy tree ecosystems in the future.

https://doi.org/10.5154/r.rchscfa.2014.10.052
PDF
ePUB

References

Aitken, S. N., Yeaman, S., Holliday, J. A., Wang, T., & Curtis-McLane, S. (2008). Adaptation, migration or extirpation: Climate change outcomes for tree populations. Evolutionary Applications, 1, 95–111. doi: https://doi.org/10.1111/j.1752-4571.2007.00013.x

Alfaro, R. I., Fady, B., Vendramin, G. G., Dawson, I. K., Fleming, R. A., & Loo J. et al. (2014). The role of forest genetic resources in responding to biotic and abiotic factors in the context of anthropogenic climate change. Forest Ecology and Management, 333(1), 76−87. doi: https://doi.org/10.1016/j.foreco.2014.04.006

Bansal, S., Harrington, C. A., Gould, P. J., & StClair, J. B. (2015). Climate-related genetic variation in drought-resistance of Douglas-fir (Pseudotsuga menziesii). Global Change Biology, 21, 947–958. doi: https://doi.org/10.1111/gcb.12719

Betancourt, J. L. (1990). Late quaternary biogeography of the Colorado Plateau. In J. L. Betancourt, T. R. Van Devender, & P. S. Martin (Eds.), Packrat Middens, the last 40,000 years of biotic change (pp. 435−477). Arizona: University Arizona Press.

Breshears, D. D., Cobb, N. S., Rich, P. M., Price, K. P., Allen, C. D., Balice, R. G., & Meyer, C. W. (2005). Regional vegetation die-off in response to global-change-type drought. Proceedings of National Academy of Sciences, 102, 15144–15148. doi: https://doi.org/10.1073/pnas.0505734102

Castellanos-Acuña, D., Lindig-Cisneros, R. A., & Sáenz- Romero, C. (2015) Altitudinal assisted migration of Mexican pines as an adaptation to climatic change. Ecosphere 6(1), article 2:1−16. doi: https://doi.org/10.1890/es14-00375.1

Chapin, F. S. III, & Starfield, A. M. (1997). Time lags and novel ecosystems in response to transient climatic change in Arctic Alaska. Climatic Change, 35, 449–461. doi: https://doi.org/10.1023/A:1005337705025

Hansen, J. (2009). Storms of my grandchildren. New York, NY, USA: Bloomsbury Press.

Hansen, J., & Sato, M. (2015). Global mean CO2 Mixing Ratios (ppm): Observations. http://www.columbia.edu/~mhs119/GHGs/CO2.1850-2014.txt

Hansen, J., Sato, M., & Ruedy, R. (2012). Perception of climate change. Proccedings of the National Academy of Sciences, 109(37), 2415–2423. doi: https://doi.org/10.1073/pnas.1205276109

Hewitt, N., Klenk, N., Smith, A. L., Bazely, D. R., Yan, N., Wood, S., & Henriques, I. (2011). Taking stock of the assisted migration debate. Biological Conservation, 144, 2560–2572. doi: https://doi.org/10.1016/j.biocon.2011.04.031

Hobbs, R. J., Higgs, E., & Harris, J. A. (2009). Novel ecosystems: implications for conservation and restoration. Trends in Ecology and Evolution, 24, 599-605. doi: https://doi.org/10.1016/j.tree.2009.05.012

Intergovernmental Panel on Climate Change (IPCC). (2000). IPCC special report. Emissions scenarios: Summary for policymakers. USA: Author. http://www.ipcc.ch/pdf/special-reports/spm/sres-en.pdf

Isaac, L. A. (1949). Better Douglas-fir forests from better seed. Seattle, WA, USA: University of Washington Press. http://hdl.handle.net/1957/10094

Joyce, D. G., & Rehfeldt, G. E. (2013). Climatic niche, ecological genetics, and impact of climate change on eastern white pine (Pinus strobus L.): Guidelines for land managers. Forest Ecology and Management, 295, 173–192. doi: https://doi.org/10.1016/j.foreco.2012.12.024

Ledig, F. T., & Kitzmiller, J. H. (1992). Genetic strategies for reforestation in the face of global climate change. Forest Ecology and Management, 50, 153–169. doi: https://doi.org/10.1016/0378-1127(92)90321-Y

Ledig, F. T., Rehfeldt, G. E., Sáenz-Romero, C., & Flores-López, C. (2010). Projections of suitable habitat for rare species under global warming scenarios. American Journal of Botany, 97(6), 970–987. doi: https://doi.org/10.3732/ajb.0900329

Leites, L. P., Robinson, A. P., Rehfeldt, G. E., Marshall, J. D., & Crookston, N. L. (2012). Height-growth response to climatic changes differs among populations of Douglas-fir: A novel analysis of historic data. Ecological Applications, 22(1), 154–165. doi: https://doi.org/10.1890/11-0150.1

Lenoir, J., Gégout, J. C., Marquet, P. A, de Ruffray, P., & Brisse, H. (2008). A significant upward shift in plant species optimum elevation during the 20th century. Science, 320, 1768–1770. doi: https://doi.org/10.1126/science.1156831

Loya-Rebollar, E., Sáenz-Romero, C., Lindig-Cisneros, R. A., Lobit, P., Villegas-Moreno, J., & Sánchez-Vargas, N. M. (2013). Clinal variation in Pinus hartwegii populations and its application for adaptation to climate change. Silvae Genetica, 62(3), 86–95. http://www.sauerlaender-verlag.com/index.php?id=1172

Malcolm, J. R., Markham, A., Neilson, R. P., & Garaci, M. (2002). Estimated migration rates under scenarios of global climate change. Journal of Biogeography, 29, 835– 849. doi: https://doi.org/10.1046/j.1365-2699.2002.00702.x

Marris, E. (2009). Planting the forest of the future. Nature, 459, 906–908. doi: https://doi.org/10.1038/459906a

Mátyás, C. (2010). Forecasts needed for retreating forests. Nature, 464, 1271. doi: https://doi.org/ doi: https://doi.org/10.1038/4641271a

Mátyás, C., Berki, I., Czúcz, B., Gálos, B., Móricz, N., & Rasztovits, E. (2010). Future of beech in Southern Europe from the perspective of evolutionary ecology. Acta Silvatica & Lingaria Hungarica, 6, 91–110. doi: https://doi.org/10.1038/4641271a

McCarty, J. P., & Zedler. J. B. (2001). Ecological restoration and its potential to reduce the negative impacts of global change. In H. A. Mooney, & J. Canadell (Eds.), Encyclopedia of global environmental change, Vol. 2: The Earth system: Biological and ecological dimensions of global environmental change (pp. 532-539). London: John Wiley & Sons Ltd.

McLachlan, J. S., Clark, J. S., & Manos, P. S. (2005). Molecular indicators of tree migration capacity under rapid climate change. Ecology, 86, 2088–2098. doi: https://doi.org/10.1890/04-1036

McLachlan, J., Hellmann, J. J., & Schwartz, M. W. (2007). A framework for debate of assisted migration in an era of climate change. Conservation Biology, 21(2), 297–302. doi: https://doi.org/10.1111/j.1523-1739.2007.00676.x

O’Neill, G. A., Ukrainetz, N., Carlson, M., Cartwright, C., Jaquish, B., King, J., & Yanchuk, A. (2008). Assisted migration to address climate change in British Columbia: Recommendations for interim seed transfer standards. Victoria, British Columbia, Canada: British Columbia- Ministry of Forest and Range Forest Science Program. http://www.for.gov.bc.ca/HFD/Pubs/Docs/Tr/Tr048.pdf

Peñuelas, J., Oyaga, R., Boada, M., & Jump, A. S. (2007). Migration, invasion and decline: Changes in recruitment and forest structure in a warming-linked shift of European beech forest in Catalonia (NE Spain). Ecography, 30, 830–838. doi: https://doi.org/10.1111/j.2007.0906-7590.05247.x

Pedlar, J. H., McKenny, D. W., Aubin, I., Beardmore, T., Beaulieu, J., Iverson, L., & Ste-Marie, C. (2012). Placing forestry in the assisted migration debate. BioScience, 62(9), 835–842. doi: https://doi.org/10.1525/bio.2012.62.9.10

Prach, K., Kosnar, J., Klimesová, J., & Martin, H. (2010). High Arctic vegetation after 70 years: a repeated analysis from Svalbard. Polar Biology 33, 635–639. doi: https://doi.org/10.1111/j.1654-109X.2011.01165.x

Rehfeldt, G. E. (1988). Ecological genetics of Pinus contorta from the Rocky Mountains (USA): A synthesis. Silvae Genetica, 37(3-4), 131–135. http://www.sauerlaender-verlag.com/fileadmin/content/dokument/archiv/silvaegenetica/37_1988/37-3-4-131.pdf

Rehfeldt, G. E., Tchebakova, N. M., Parfenova, Y. I., Wykoff, W. R., Kuzmina N. A., & Milyutin, L. I. (2002). Intraspecific responses to climate in Pinus sylvestris. Global Change Biology, 8, 912–929. doi: https://doi.org/10.1046/j.1365-2486.2002.00516.x

Rehfeldt, G. E., Ferguson, D. E., & Crookston, N. L. (2009). Aspen, climate and sudden decline in western USA. Forest Ecology and Management, 258, 2353–2364. doi: https://doi.org/10.1016/j.foreco.2009.06.005

Rehfeldt, G. E., & Jaquish, B. C. (2010). Ecological impacts and management strategies for western larch in the face of climate-change. Mitigation and Adaptation Strategies for Global Change, 15(3), 283–306. doi: https://doi.org/10.1007/s11027-010-9217-2

Rehfeldt, G. E., Crookston, N. L., Sáenz-Romero, C., & Campbell, E. (2012). North American vegetation model for land use planning in a changing climate: A statistical solution to large classification problems. Ecological Applications, 22(1), 119–141. doi: https://doi.org/10.1890/11-0495.1

Rehfeldt, G. E., Jaquish, B. C., López-Upton, J., Sáenz-Romero, C., StClair, J. B., Leites, L. P., & Joyce, D. G. (2014). Comparative genetic responses to climate for the varieties of Pinus ponderosa and Pseudotsuga menziesii: Realized climate niches. Forest Ecology and Management, 324, 126–137. doi: https://doi.org/10.1016/j.foreco.2014.02.035

Ricciardi, A., & Simberloff, D. (2008). Assisted colonization is not a viable conservation strategy. Trends in Ecology and Evolution, 24, 248–253. doi: https://doi.org/10.1016/j.tree.2008.12.006

Sarr, D., Puettmann, K., Pabst, R., Cornett, M., & Leonel, A. (2004). Restoration Ecology: New perspectives and opportunities for forestry. Journal of Forestry, 102, 20– 24. Retrieved from http://webpages.sou.edu/~SarrD/Publications/JoFSarretalJulAug2004.pdf

Sáenz-Romero, C., & Tapia-Olivares, B. L. (2008). Genetic variation in frost damage and seed zone delineation within an altitudinal transect of Pinus devoniana (P. michoacana) in Mexico. Silvae Genetica, 57(3), 165–170. http://www.sauerlaender-verlag.com/fileadmin/content/dokument/archiv/silvaegenetica/57_2008/Heft_3/_11__Saenz_Romero.pdf

Sáenz-Romero, C., Rehfeldt, G. E., Crookston, N. L., Duval, P., St-Amant, R., Beaulieu, J., & Richardson, B. (2010). Spline models of contemporary, 2030, 2060 and 2090 climates for México and their use in understanding climate-change impacts on the vegetation. Climatic Change, 102, 595–623. doi: https://doi.org/10.1007/s10584-009-9753-5

Savolainen, O., Pyhajarvi, T., & Knurr, T. (2007). Gene flow and local adaptation in trees. Annual Review of Ecology, Evolution, and Systematics, 38, 595–619. doi: https://doi.org/10.1146/annurev.ecolsys.38.091206.095646

Seabrook, L., Mcalpine, C. A., & Bowen, M. E. (2011). Restore, repair or reinvent: Options for sustainable landscapes in a changing climate. Landscape and Urban Planning, 100, 407–410. doi: https://doi.org/10.1016/j.landurbplan.2011.02.015

Tchebakova, N. M., Rehfeldt, G. E., & Parfenova, E. I. (2005). Impacts of climate change on the distribution of Larix spp. and Pinus sylvestris and their climatypes in Siberia. Mitigation and Adaptation Strategies for Global Change, 11, 861–882. doi: https://doi.org/10.1007/s11027-005-9019-0

Ukrainetz, N. K., O’Neill, G. A., & Jaquish, B. (2011). Comparison of fixed and focal point seed transfer systems for reforestation and assisted migration: A case study for interior spruce in British Columbia. Canadian Journal of Forest Research, 41, 1452–1464. doi: https://doi.org/10.1139/X11-060

World Meteorological Organization (WMO). (2013). The Global Climate 2001-2010: A decade of climate extremes, Summary Report. WMO-1119. Geneva, Switzerland: World Meteorological Organization. http://www.unep.org/pdf/wmo_report.pdf

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2016 Revista Chapingo Serie Ciencias Forestales y del Ambiente