Revista Chapingo Serie Ciencias Forestales y del Ambiente
Familial variation in Pinus leiophylla Schiede ex Schltdl. & Cham. seedlings in response to drought: water and osmotic potential
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF

Keywords

Water stress
water potential
osmotic potential
biomass allocation

How to Cite

Castelán-Muñoz, N., Jiménez-Casas, M., López-Delgado, H. A. ., Campos-García, H., & Vargas-Hernández, J. J. (2015). Familial variation in Pinus leiophylla Schiede ex Schltdl. & Cham. seedlings in response to drought: water and osmotic potential. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 21(3), 295–306. https://doi.org/10.5154/r.rchscfa.2014.10.043

Abstract

The seedling variation in four families of Pinus leiophylla with different origins was evaluated regarding the reaction to drought, considering water potential variables (Ψa), osmotic potential variables (Ψ0), components and biomass allocation. The families of P. leiophylla are located in a seed orchard of the Colegio de Postgraduados in the State of Mexico. The study was done with the purpose of identifying the genotypes resistant to water stress. After 26 days without water, 50 % of the seedlings presented permanent decay in the apex of the stem, with Ψ= -3.35 MPa and Ψ= -3.23 MPa, which represented a decrease of 596 and 112 %, respectively, due to drought. The accumulation of biomass was also significantly affected (= 0.05) in the families assessed, with the exception of the family from San Rafael. On average, the biomass of the root of the seedlings in drought was 38 % smaller than that of the seedlings under normal circumstances. The P. leiophylla families from San Juan Tetla and Santa María Atepetzingo (both from the state of Puebla) presented a weaker response to the stress imposed, whereas the family from Tlalmanalco (State of Mexico) was the most affected.

https://doi.org/10.5154/r.rchscfa.2014.10.043
PDF

References

Duan, B., Yin, C., & Li, C. (2005). Responses of conifers to drought stress. Chinese Journal of Applied and Environmental Biology, 11, 115–122. http://www.cibj.com/Upload/PaperUpLoad/ebook/2005/001/27.pdf

Dvorak, W. S., Hodge, G. R., & Kietzka, J. E. (2007). Genetic variation in survival, growth, and stem form of Pinus leiophylla in Brazil and South Africa and provenances resistance to pitch canker. Southern Forest, 67, 125–135. doi: https://doi.org/10.2989/SHFJ.2007.69.3.1.351#.VAS0r21yce8

Major, J. E., & Johnson, K. H. (2001). Shoot water relations of mature black spruce families displaying a genotype x environment interaction in growth rate. III: Diurnal patterns as influenced by vapor pressure deficit and internal water status. Tree Physiology, 21, 579–587. doi: https://doi.org/10.1093/treephys/21.9.579

Martínez, T. T., Vargas, H. J. J., López, U. J., & Muñoz, O. A. (2002). Respuesta al déficit hídrico en Pinus leiophylla: Acumulación de biomasa, desarrollo de hojas secundarias y mortandad de plántulas. Terra, 20, 291–301. http://www.chapingo.mx/terra/contenido/20/3/art291-301.pdf

Martiñón, M. R. J., Vargas H. J. J., López, U. J., Gómez, G. A., & Vaquera, H. H. (2010). Respuesta de Pinus pinceana Gordon a estrés por sequía y altas temperaturas. Revista Fitotecnia Mexicana, 33, 239–248. http://www.scielo.org.mx/pdf/rfm/v33n3/v33n3a8.pdf

Morales, V. M. G., Ramírez, M. C. A., Delgado, V. P., & López, U. J. (2010). Indicadores reproductivos de Pinus leiophylla Schltdl. et Cham. en la cuenca del río Angulo, Michoacán. Revista Mexicana Ciencias Forestales, 1, 31– 38. http://revistas.inifap.gob.mx/index.php/Forestales/article/view/154/145

Jiménez, C. M., & Zwiazek, J. J. (2014). Adventitious sprouting of Pinus leiophylla in response to salt stress. Annals of Forest Science, 71, 811–819. doi: https://doi.org/10.1007/s13595-014-0379-z

Landis, T. D. (1989). Irrigation and water management. In T. D. Landis, R. W. Tinus, S. E. McDonald, & J. P. Barnett, (Eds.), The container tree nursery manual (vol. IV, pp. 69–118). Washington: US Department of Agriculture, Forest Service. http://admin.rngr.net/publications/ctnm/volume- 4/vol_4_chapter_2.pdf

Prieto, R. J., Cornejo, O. E., Domínguez, C. P., Návar, J. J., Marmolejo, M. J., & Jiménez, P. J. (2004). Estrés hídrico en Pinus engelmannii Carr. producido en vivero. Investigación Agraria: Sistemas y Recursos Forestales, 13, 443–451. http://recyt.fecyt.es/index.php/IA/article/view/2386/1782

Ramachandra, R. A., Viswanatha, C. K., & Vivekanandan, M. (2004). Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. Journal of Plant Physiology, 161, 1189–1202. doi: https://doi.org/10.1016/j.jplph.2004.01.013

Richardson, D. M., Rundel, P. W., Jackson, S. T., Teskey, R. O., Aronson, J., Bytnerowicz, A., & Procheş, S. (2007). Human impacts in pine forests: Past, present and future. Annual Review of Ecology and Systematics, 38, 275- 297. doi: https://doi.org/10.1146/annurev.ecolsys.38.091206.095650

Sanders, G. J., & Arndt, S. K. (2012). Osmotic adjustment under drought conditions. In R. Arcona (Ed.), Plant responses to drought stress: From morphological to molecular features (pp. 199–229). Berlin, Germany: Springer Berlin Heidelberg.

Scholander, P. F., Hammel, H. T., Bradstreet, E. D., & Hemmingsen, E. (1965). Sap pressure in vascular plants. Science, 148, 339–346. doi: https://doi.org/10.1126/science.148.3668.339

Shvaleva, A. L., Silva, C. E., Breia, E., Jouve, L., Hausman, J. F., Almeida, M. H., …Chaves, M. M. (2005). Metabolic responses to water deficit in two Eucalyptus globulus clones with contrasting drought sensitivity. Tree Physiology, 26, 239–248. doi: https://doi.org/10.1093/treephys/26.2.239

Sofo, A. (2011). Drought stress tolerance and photoprotection in two varieties of olive tree. Acta agriculturae Scandinavica, 61, 11–720. doi: https://doi.org/10.1080/09064710.2010.545071

Statistix 8. (2005). Statistix. Data analysis software for researchers. Tallahassee, FL, USA: Analytical Software.

Steudle, E. (1993). Pressure probe technique: Basic principles and application to studies of water and solute relations at the cell, tissue and organ level. In J. A. C. Smith, & H. Griffiths (Eds.), Water deficits plant responses from cell to community (pp. 5–31). London: Bios Scientific Publishers Limited.

Su, H., Li, Y., Liu, W., & Xu, H. (2014). Changes in water use with growth in Ulmus pumila in semiarid sandy land of northern China. Trees Structure and Function, 28, 41– 52. doi: https://doi.org/10.1007/s00468-013-0928-3

Susiluoto, S., & Berninger, F. (2007). Interactions between morphological and physiological drought responses in Eucalyptus microtheca. Silva Fennica, 41,221–229. doi: https://doi.org/10.14214/sf.292

Taiz, L., & Zeiger, E. (2006). Fisiología vegetal (3a. ed.). Castelló de la Plana: Universitat Jaume I.

Xu, Z., Zhou, G., & Shimizu, H. (2010). Plant responses to drought and rewatering. Plant Signaling & Behavior, 5, 649–654. doi: https://doi.org/10.4161/psb.5.6.11398

Young, R. A., Boshier, D., & Boyle, T. (2000). Forest conservation genetics: Principles and practice. Australia: Csiro Publishing.

Zhu, Y. J., Li, L., & Jia, Z. Q. (2011). Research advances on drought resistance mechanism of plant species in arid zones of China. Sciences in Cold and Arid Regions, 3, 448–454. doi: https://doi.org/10.3724/SP.J.1226.2011.00448

Zolfaghari, F., Fayyaz, P., Nazari, M., & Valladares, F. (2013). Interactive effects of seed size and drought stress on growth and allocation of Quercus brantii Lindl. seedlings from two provenances. Turkish Journal of Agriculture and Forestry, 37, 361–368. http://journals.tubitak.gov.tr/agriculture/issues/tar-13-37-3/tar-37-3-13-1206-54.pdf

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2015 Revista Chapingo Serie Ciencias Forestales y del Ambiente