Revista Chapingo Serie Ciencias Forestales y del Ambiente
Evaluation of physico-mechanical properties of wood-plastic boards produced in cuba compared to conventional boards
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF

Keywords

Industrial waste
board industry
extrusion
plywood boards

How to Cite

Martínez-López, Y. ., Fernández-Concepción, R. R. ., Álvarez-Lazo, D. A. ., García-González, M. ., & Martínez-Rodríguez, E. . (2014). Evaluation of physico-mechanical properties of wood-plastic boards produced in cuba compared to conventional boards. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 20(3), 227–236. https://doi.org/10.5154/r.rchscfa.2014.02.003

Abstract

The physico-mechanical properties of wood-plastic (WP) boards were evaluated and compared with those of conventional boards (sugarcane bagasse particleboard, plywood board and sugarcane bagasse fiberboard) more commonly used in Cuba. The WP board was made with waste from the forestry industry (sawdust), industrial waste (thermoplastics) and chemical additives in amounts of 50, 30 and 20%, respectively; the board was obtained by extrusion molding. Results were analyzed with the Kruskal-Wallis test and Fisher’s LSD post-hoc multiple comparisons analysis to determine differences relative to conventional boards. Results indicate that the physical properties of wood- plastic boards improved with increasing density. Water absorption and swelling were lower than in conventional boards, whereas the mechanical properties (bending, compression and tensile strength) were higher. Tensile strength, bending and compression in the wood-plastic boards were statistically similar (P> 0.05) in the plywood. Given their properties, it can be concluded that wood-plastic boards are able to replace both conventional and wood boards in outdoor conditions

https://doi.org/10.5154/r.rchscfa.2014.02.003
PDF

References

AITIM D 1037-99. (1999). Standard test methods for evaluating properties of wood-base fiber and particle panel materials. España: Universidad Politécnica de Madrid.

Beg, M. D. H., & Pickering, K. L. (2008a). Part I: Effects on physical and mechanical properties. Composites Part A. Applied Science and Manufacturing,39(7),1091–1100. doi: https://doi.org/10.1016/j.compositesa.2008.04.013

Beg, M. D. H., & Pickering, K. L. (2008b). Reprocessing of wood fibre reinforced polypropylene composites. Part II: Hygrothermal ageing and its effects. Composites Part A: Applied Science and Manufacturing, 39(7), 1565–1571. doi: https://doi.org/10.1016/j.compositesa.2008.06.002

Bouafif, H., Koubaa, A., Perré, P., & Cloutier, A. (2009). Effects of fiber characteristics on the physical and mechanical properties of wood plastic composites. Composites Part A: Applied Science and Manufacturing, 40(12), 1975–1981. doi: https://doi.org/10.1016/j.compositesa.2009.06.003

Bledzki, A., & Faruk, O. (2004). Creep and impact properties of wood fibre–polypropylene composites: Influence of temperature and moisture content.Composites Science and Technology, 64(5), 693–700. doi: https://doi.org/10.1016/S0266-3538(03)00291-4

Dominkovics, Z., Dányádi, L., & Pukánszky, B. (2007). Surface modification of wood flour and its effect on the properties of PP/wood composites.Composites Part A: Applied Science and Manufacturing, 38(8), 1893–1901. doi: https://doi.org/10.1016/j.compositesa.2007.04.001

Haque, M., Hasan, M., Islam, M., & Ali, M. (2009). Physic-mechanical properties of chemically treated palm and coir fiber reinforced polypropylene composites. Bioresource Technology, 100(20), 4903–4906. doi: https://doi.org/10.1016/j.biortech.2009.04.072

Jayaraman, K., & Bhattacharyya, D. (2004). Mechanical performance of wood fiber–waste plastic composite materials. Resources Construction and Reycling, 41(4), 307–319. doi: https://doi.org/10.1016/j.resconrec.2003.12.001

Karmarkar, A., Chauhan, S. S., Modak, J., & Chanda, M. (2007). Mechanical properties of wood–fiber reinforced polypropylene composites: Effect of a novel compatibilizer with isocyanate functional group. Composites Part A: Applied Science and Manufacturing, 38(2), 227–233. doi: https://doi.org/10.1016/j.compositesa.2006.05.005

Lucchetta, G., Bariani, P., & Knight, W. (2006). A new approach to the optimization of blends composition in injection moulding of recycled polymers. CIRP Annals - Manufacturing Technology, 55(1), 1–4. doi: https://doi.org/10.1016/S0007-8506(07)60460-0

Moya, C., Poblete, H., & Valenzuela, L. (2012). Propiedades físicas y mecánicas de compuestos de polietileno reciclado y harinas de corteza y madera de Pinus radiata fabricados mediante moldeo por inyección. Revista Maderas, Ciencia y Tecnología, 14(1), 13–29. doi: https://doi.org/10.4067/S0718-221X2012000100002

NC-EN 310. (2003). Tableros de partículas y tableros de fibras. Determinación del módulo de elasticidad en flexión y de la resistencia a la flexión. La Habana, Cuba: Oficina Nacional de Normalización.

NC-EN 317. (2003). Tableros de partículas y tableros de fibras. Determinación de la dilatación del espesor después de inmersión en agua. La Habana, Cuba: Oficina Nacional de Normalización.

NC-EN 319. (2003). Tableros de partículas y tableros de fibras. Determinación de la resistencia a la tracción perpendicular a las caras del tablero. La Habana, Cuba: Oficina Nacional de Normalización.

NC-EN 322. (2003). Tableros de partículas y tableros de fibras. Determinación de la humedad. La Habana, Cuba: Oficina Nacional de Normalización.

NC-EN 323. (2003). Tableros de partículas y tableros de fibras. Determinación de la densidad. La Habana, Cuba: Oficina Nacional de Normalización.

NC 314. (2004). Tableros de partículas y tableros de fibras - acondicionamiento y preparación de probetas para los ensayos. La Habana, Cuba: Oficina Nacional de Normalización.

Ngueho, M., Koubaa, A., Cloutier, A., Soulounganga, P., & Wolcott, M. (2010). Effect of bark fiber content and size on the mechanical properties of bark/HDPE composites. Composites Part A: Applied Science and Manufacturing, 41, 131–137. doi: https://doi.org/10.1016/j.compositesa.2009.06.005

Poblete, H. (2001). Tableros de partículas. Chile: Ed. El Kultrún.

Poblete, H., & Roque, C. (2006). Relación entre la densidad y propiedades de tableros HDF producidos por un proceso seco. Maderas, Ciencia y Tecnología, 8(3), 169–182. doi: https://doi.org/10.4067/S0718-221X2006000300004

Poblete, W., & Burgos, O. (2011). Eucaliptus nitens como materia prima para la fabricación de tableros de partículas. Maderas. Ciencia y Tecnología, 12(1), 25–35. doi: https://doi.org/10.4067/S0718-221X2010000100003

Raukola, J., & Makinen, K. (2003). Wood plastic composites with conical Conex® Wood Extruder. Finland: VTT Processes.

Rowell, R., Lange, S., & Jacobson, R. (2000). Weathering performance of plant-fiber/thermoplastic composites. Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals, 353(1), 85–94. doi: https://doi.org/10.1080/10587250008025650

Rowell, R., Pettersen, R., Han, J., & Rowell, J. (2005). Cell wall chemistry in handbook of wood chemistry and wood composites. Boca Raton, Florida, USA: CRC Press LLC.

Shukla, S. R., & Kandem, D. P. (2008). Properties of laminated veneer lumber (LVL) made with low density hardwood species: Effect of the pressure duration. Holz als Roh und Werkstoff, 66(2), 119–127. doi: https://doi.org/10.1007/s00107-007-0209-1

StatSoft (2005). STATISTICA versión 7.1. USA. Autor.

Tenorio, C., Moya, R., & Camacho, D. (2012). Propiedades físicomecánicas de tableros terciados construidos con especies tropicales de plantaciones para uso estructural. CERNE, 18(2), 317–325. http://www.redalyc.org/articulo.oa?id=74423522017

U. S. Plastic Lumber. (2004). Technical data. 2600 W. Chicago, IL: Author.Wambua, P., Ivens, J., & Verpoest, I. (2003). Natural fibres: Can they replace glass in fibre reinforced plastics? Composites Science and Technology, 63(9), 1259–1264. doi: https://doi.org/10.1016/S0266-3538(03)00096-4

Wang, W., Sain, M., Cooper, P. A. (2005). Hygrothermal weathering of rice hull/HDPE composites under extreme climatic conditions. Polymer Degradation and Stability, 90(3), 540–545. doi: https://doi.org/10.1016/j.polymdegradstab.2005.03.014

Yadama, V., Lowell, E., Peterson, N., & Nicholls, D. (2009). Woodthermoplastic composites manufactured using Beetle- Killed Spruce from Alaska. Polymer Engineering and Science, 49(1), 129–136. doi: https://doi.org/10.1002/pen.21231

Yang, H., Kim, H., Park, H., Lee, B., & Hwang, T. (2006). Water absorption behavior and mechanical properties of lignocellulosic filler–polyolefin bio-composites. Composite Structures, 72(4), 429–437. doi: https://doi.org/10.1016/j.compstruct.2005.01.013

Yeh, S.-K., Agarwal, S., & Gupta, R. (2009). Wood–plastic composites formulated with virgin and recycled ABS. Composites Science and Technology, 69(13), 2225–2230. doi: https://doi.org/10.1016/j.compscitech.2009.06.007

Zabihzadeh, M. (2010). Water uptake and flexural properties of natural filler/HDPE composites. Bioresources, 5(1), 316–323. http://ojs.cnr.ncsu.edu/index.php/BioRes/article/viewFile/BioRes_05_1_0 216_Zabijzadeh_Water_UPtake_Flexural_Lignocell_HDPE_Composites/ 511

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2014 Revista Chapingo Serie Ciencias Forestales y del Ambiente