Revista Chapingo Serie Ciencias Forestales y del Ambiente
MORPHOGENIC RESPONSES IN THE in vitro PROPAGATION OF PECAN (Carya illinoinensis [Wangenh] K. Koch)
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF

Keywords

Explants
callogenesis
antioxidants
growth regulators

How to Cite

Ávila-Treviño, J. A. ., Arreola-Ávila, J. G. ., Rodríguez-de la O, J. L. ., Trejo-Calzada, R. ., Valdez-Cepeda, R. D. ., & Borja-de la Rosa, A. . (2013). MORPHOGENIC RESPONSES IN THE in vitro PROPAGATION OF PECAN (Carya illinoinensis [Wangenh] K. Koch). Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 19(3), 469–481. https://doi.org/10.5154/r.rchscfa.2013.09.037

##article.highlights##

  • Native Pecan diversity is important in material multiplication with economic and biological importance
  • Parents characteristic is maintained by vegetative propagation
  • A propagation in vitro protocol is evaluated in pecan

Abstract

Embryogenic and organogenic responses in pecan (Carya illinoinensis [Wangenh] K. Koch) were observed as a result of the in vitro cultivation of segments of leaves, axillary buds and zygotic embryos. Necrosis was controlled through the use of activated carbon (AC: 1%), polyvinylpyrrolidone (0.1 %), silver nitrate (AgNO3: 1 %), citric acid (150 mg·L-1) and ascorbic acid (100 mg·L-1, in both light and darkness. Murashige and Skoog base medium (MS) was used, supplemented with 0.40 mg·L-1 of thiamine, 100 mg·L-1 of myo-inositol, 3 % saccharose, incorporating 2,4-D for leaves, thidiazuron (TDZ) for embryos, and combinations of benzyladenine (BA), kinetin (KIN) naphthalenacetic acid (ANA) and indolebutyric acid (AIB) for axillary buds. Tissue necrosis was reduced by 75 % and 83 % adding CA and AgNO3, respectively. 33 % and 66 % of embryogenic callus originated from leaves, using 1 and 3 mg·L-1 of 2,4-D. The highest callus production (58 %) from embryos was obtained from the concentration of 3 mg·L-1 of TDZ. In axillary buds, the combination of KIN (3.0 μM), BA (1.0 μM) and AIB (0.3 μM) increased the number of leaves and seedlings, as well as shoot length.

 
https://doi.org/10.5154/r.rchscfa.2013.09.037
PDF

References

Aiiyu, O. (2005). Application of tissue culture to cashew (Anacardium occidentale L.) breeding: An appraisal. African Journal of Biotechnology, 4,1485–1489. http://academicjournals.org/article/article1382013749_Aliyu.pdf

Álvarez, J. M., Majada, J., & Ordás, R. J. (2009). An improved micropropagation protocol for maritime pine (Pinus pinaster Ait.) isolated cotyledons. Forestry, 86(2), 175–184. doi: https://doi.org/10.1093/forestry/cpn052

De la Viña, G., Barceló-Muñoz, A., & Pliego-Alfaro, F. (2001). Effect of culture media and irradiance level on growth and morfology of Persea americana Mill microcuttings. Plant Cell, Tissue and Organ Culture, 65, 229–237. doi: https://doi.org/10.1023/a:1010675326271

Huang, T., Shaolin, P., Gaofeng, D., & Lanying, Z. (2002). Plant regeneration from leaf-derived callus in Citrus grandis (pummelo): Effects of auxins in callus induction medium. Plant Cell, Tissue and Organ Culture, 69 (2), 141–146. doi: https://doi.org/10.1023/a:1015223701161

Humanez, A., Blasco, M., Brisa, C., Segura, J., & Arrillaga, I. (2011). Thidiazuron enhances axillary and adventitious shoot proliferation in juvenile explants of mediterranean provenances of maritime pine Pinus pinaster. In Vitro Celular and Developmental Biology Plant, 47(5), 569–577. doi: https://doi.org/10.1007/s11627-011-9397-9

Kryvenki, M., Kosky, R. G., Guerrero, D., Domínguez, M., &Reyes, M. (2008). Obtención de callos con estructuras embriogénicas de Stevia rebaudiana Bert. en medios de cultivo semisólidos. Biotecnología Vegetal, 8(2), 1609–1841.

Labardi, M. I., Herry, I. S., Menabeni, D., Thorpe, T. A. (1995). Organogenesis and stomatic embryogenesis in Cupressus sempevirens. Plant Cell Tussue and Organ Culture, 40, 179–182. doi: https://doi.org/10.1007/bf00037672

Lelu-Walter, W. M., Bernier-Cardou, C. M., & Klimaszewska, K. (2006). Simplified and improved somatic embryogenesis for clonal propagation of Pinus pinaster (AIt.). Plan Cell Reproduction,25(8), 767–776. doi: https://doi.org/10.1007/s00299-006-0115-8

Long, L. M., Preece, J. E., & Sambeeck, J. W. (1995). Adventitious regeneration of Juglans nigra (eastern black walnut). Plant Cell Reproduction, 14, 799–803. doi: https://doi.org/10.1007/bf00232926

Minitab Inc. (2009). Minitab 16 statistical Software. Pensilvania. USA.

Moore, E. D., Williams, G. W., Palma, M. A., & Lombardini, L. (2009). Effectiveness of state level pecan promotion programs: The case of the Texas pecan checkoff program. HortScience, 44, 1914–1920. http://hortsci.ashspublications.org/content/44/7/1914.full.pdf+html

Mulwa, R. M., & Bhalla, P. L. (2006). In vitro plant regeneration from immature cotyledon explants of macadamia (Macadamia tetraphylla L. Johnson). Plant Cell Reproduction, 25, 1281–1286. doi: https://doi.org/10.1007/s00299-006- 0182-x

Poornima, G. N., & Ravishankar, R. V. (2007). In vitro propagation of wild yams, Dioscorea oppositifolia (Linn) and Dioscorea pentaphylla (Linn). Journal of Biotechnology, 6(20), 2348–2352. http://www.ajol.info/index.php/ajb/article/view/58043

Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiology Plantarum, 15, 473–497. doi: https://doi.org/10.1111/j.1399- 3054.1962.tb08052.x

Nomura, K., Matsumoto, S., Masuda, K., & Inoue, M. (1998). Reduced glutathione promotes callus growth and shoot development in a shoot tip culture of apple root stock M26. Plant Cell Reproduction, 17, 597–600. doi: https://doi.org/10.1007/s002990050449

Ollero, J., Muñoz, J., Segura, J., & Arrillaga, I. (2010). Micropropagation of oleander (Nerium oleander L.). HortScience, 45(1), 98–102. http://hortsci.ashspublications.org/content/45/1/98.full.pdf+html

Percy, R. E., Klimaszwska, K., & Cyr, D. R. (2000). Evaluation of somatic embryiogenesis for clonal propagation of western white pine. Canadian Journal of Forestry Research, 30,1867–1876. doi: https://doi.org/10.1139/x00-115

Rodríguez, A. P., & Wetzstein, H. Y. (1994). The effect of auxin type and concentration on pecan (Carya illinoinensis) subsequent convertion in plants. Plant Cell Reproduction, 13, 607–611. doi: https://doi.org/10.1007/bf00232930

Ruginy, E., & Muganu, M. (1998). A novel strategy for the induction and maintenance of shoot regeneration from callus derived from stablished shoots of apple (Malus domestica) cv. Golden Delicious. Plant Cell Reproduction, 17, 581–585.

Salvi, N. D., Singh, H., Tivarekar, S., & Eapen, S. (2001). Plant regeneration from different explants of neem. Plant Cell Tissue and Organ Culture, 65,159–162. doi: https://doi.org/doi: https://doi.org/10.1023/a:1010672809141

Scaltsoyiannes, A., Tsoulpha, P., Panestos, K., & Moulalis, D. (1998). Effect of genotype on micropropagation of walnut trees (Juglans regia). Journal Silvae Genetica, 46(6), 326–332. http://www.rheinischesmuseumfuerphilologie.de/fileadmin/content/ dokument/archiv/silvaegenetica/46_1997/46-6-326.pdf

SPSS Inc. (2009). PASW Statistics. Chicago IL.

Tavakkol, R., Angoshtari, R., & KalantariI, S. (2011). Effects of light and different plant growth regulators on induction of callus growth in rapeseed (Brassica napus L.) genotypes. Plant Omic Jurnal, 4(2), 60–67. http://www.pomics.com/tavakkol_4_2_2011_60_67.pdf

Thompson, T. E., & Grauke, L. J. (2012). ‘Lipan’ Pecan. HortScience, 47, 121–123.

Uribe, M., & Cifuentes, L. (2004). Aplicación de técnicas de cultivo in vitro en la propagación de Legrandia concinna. Bosque, 25(1), 717–724. http://www.redalyc.org/articulo.oa?id=173114404012

Valderrama, S., Chico, J., Tejada, J., & Vega, A. (2008). Regeneración de plántulas, vía embriogénesis somática, a partir de hojas de fresa, Fragaria virginiana, utilizando ANA y BAP. Rebiol, 28(2), 346–351.

Vieitez, A. M., Corredoira, E., Ballester, A., Muñoz, F., Durán, J., &Ibarra, M. (2009). In vitro regeneration of the importante North American oak species Quercus alba, Quercus bicolor and Quercus rubra. Plant Cell, Tissue and Organ Culture, 98, 135–145. doi: https://doi.org/10.1007/s11240-009-9546-6

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2013 Revista Chapingo Serie Ciencias Forestales y del Ambiente