Revista Chapingo Serie Ciencias Forestales y del Ambiente
Morphogenic responses of three explants of Lupinus montanus (H.B.K.) cultured in vitro
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF

Keywords

Shoots
callus
necrosis
morphogenesis

How to Cite

Ramírez-González, R.-G., Rodríguez-de la O, J. L. ., Arreola-Ávila, J. G. ., & Álvarez-Moctezuma, J. G. . (2015). Morphogenic responses of three explants of Lupinus montanus (H.B.K.) cultured in vitro. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 21(1), 17–27. https://doi.org/10.5154/r.rchscfa.2013.07.022

Abstract

Necrosis and morphogenic response of cotyledon, epicotyl and hypocotyl explants of Lupinus montanus (HBK) seedlings germinated in vitro were evaluated to establish the basic conditions of micropropagation. Necrosis was evaluated in MS medium with 0.40 mg·liter-1 thiamine, 100 mg·liter-1 myo-inositol, 3 % sucrose and 7 g·liter-1 agar-agar and different doses of activated carbon (AC) and citric acid. Treatments with AC (50 mg·liter-1 and 100 mg·liter-1) were the best in the control of necrosis (= 0.001); the cotyledon had a higher level of necrosis (< 60 %) than the epicotyl and hypocotyl (10 to 30 %). Morphogenic responses were analyzed on MS medium with 0.40 mg·liter-1 thiamine, 100 mg·liter-1 myo-inositol, 3 % sucrose, 7 g·liter-1 agar-agar, 100 mg·liter-1 AC and five combinations of IAA (indole acetic acid) and BA (6-benzyladenine). The hypocotyl and epicotyl explants showed higher organogenic response (> 70 %), whereas the cotyledon response was primarily callogenic (50 %). The epicotyl cultured on MS medium with 3.0 μM IAA and 1.0 μM BA had the highest number of shoots (10) and height thereof (11.4 ±2.6 cm).

https://doi.org/10.5154/r.rchscfa.2013.07.022
PDF

References

Arauz, F. (1998). Fitopatología: Un enfoque agroecológico. San José, Costa Rica: Universidad de Costa Rica. Azofeifa, Á. (2009). Problemas de oxidación y oscurecimiento de explantes cultivados in vitro. Agronomía Mesoamericana, 20, 153–175. doi: https://doi.org/10.15517/am.v20i1.4990

Bermúdez, T. K., Martínez, H. J., Figueroa, R., Legal, L., & Wink, M. (2009). Activity of quinolizidine alkaloids from three Mexican Lupinus against the lepidopteran crop pest Spodoptera frugiperda. BioControl, 54, 459–46. doi: https://doi.org/10.1007/s10526-008-9180–y

Corona, A., Gómez, M., & Linding, R. (2013). Efecto de la escarificación y la calidad de la luz en la germinación de Lupinus elegans. Biológicas, 9, 47–54. http://www.biologicas.umich.mx/index.php/biologicas/article/view/20/20

Dove, E. R., Mori, T. A., Chew, G. T., Barden, A. E., Woodman, R. J., Puddey, I. B., Hodgson, J. M. (2011). Lupin and soya reduce glycaemia acutely in type 2 diabetes. British Journal of Nutrition, 106, 1045–1051. doi: https://doi.org/10.1017/S0007114511001334

Dunn, D. B. (1979). Lupinus. In J. Rzedowski & G. C. de Rzedowski (Eds.), Flora fanerogámica del Valle de México. México, D. F.: Compañía Editorial Continental, S. A

Lee, Y. P., Mori, T. A., Sipsas, S., Barden, A., Puddey, I. B., Burke, V.,... Hodgson, J. M. (2006). Lupin-enriched bread increases satiety and reduces energy intake acutely. American Journal of Clinical Nutrition, 84, 975–980. http://ajcn.nutrition.org/content/84/5/975.full.pdf

Mroginski, L., Sansberro P., & Flaschland, E. (2010). Establecimiento de cultivos de tejidos vegetales. In G. Levitus, V. Echenique, C. Rubinstein, E. Hopp, & L. Mroginski (Eds.), Biotecnología y mejoramiento vegetal 2 (pp.17–25). Buenos Aires, Argentina: Instituto Nacional de Tecnología Agropecuaria (INTA).

Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco cultures. Physiology Plant, 15, 473–497. http://essm.tamu.edu/media/46257/murashigeandskoogintropapersjanick.pdf

Ortega-David, E., Rodríguez, A. D., David, A. & Zamora-Burbano, A. (2010). Caracterización de semillas de lupino (Lupinus mutabilis) sembrado en los Andes de Colombia. Acta Agronómica, 59, 111–118. http://www.revistas.unal.edu.co/index.php/acta_agronomica/article/view/14094/14956

Phoplonker, M. A., & Caligari, P. D. S. (1993). Cultural manipulations affecting callus formation from seedling explants of the pearl lupin (Lupinus mutabilis Sweet). Annals of Applied Biology, 123, 419–432. doi: https://doi.org/10.1111/j.1744 -7348.1993.tb04104

Rivera, M. R., Montes, H. E., Hernández, F. E., Salinas, P. F., Rodríguez, M. M., & Bermúdez, T. K. (2008). Effects of growth regulator and explant type on callus induction by Lupinus montanus HBK. In J. A. Palta, & J. D. Berger (Eds), Lupins for health and wealth (pp. 143–146). Australia: International Lupin Association.

Rodríguez, G. H., Hechevarría, S. I., Rodríguez, F. C., & Rivera, A. M. M. (2003). Propagación in vitro de Artemisia absinthium L. en Cuba. Revista Cubana de Plantas Medicinales, 8(1). http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1028-47962003000100003&lng=es

SYSTAT 13 for Windows (2009). Bangalore, India: Cranes Software International.

Zamora-Natera F., García-López, P., Ruiz-López, M., & Salcedo-Pérez, E. (2008). Composición de alcaloides en semillas de Lupinus mexicanus (Fabaceae) y evaluación antifúngica y alelopática del extracto alcaloideo. Agrociencia, 42(2), 185–192. http://www.scielo.org.mx/pdf/agro/v42n2/v42n2a6.pdf

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2015 Revista Chapingo Serie Ciencias Forestales y del Ambiente