Revista Chapingo Serie Ciencias Forestales y del Ambiente
GROWTH AND NUTRIENT CONTENTS OF Pinus greggii Engelm. INOCULATED WITH THE EDIBLE ECTOMYCORRHIZAL MUSHROOM Hebeloma mesophaeum (Pers.) Quél.
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF

Keywords

macronutrients
pines
edible wild mushrooms
sporomes

How to Cite

Martínez-Reyes, M. ., Pérez-Moreno, J. ., Villarreal-Ruiz, L. ., Ferrera-Cerrato, R. ., Xoconostle-Cázares, B. ., & Vargas-Hernández, J. J. . (2012). GROWTH AND NUTRIENT CONTENTS OF Pinus greggii Engelm. INOCULATED WITH THE EDIBLE ECTOMYCORRHIZAL MUSHROOM Hebeloma mesophaeum (Pers.) Quél. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 18(2), 183–192. https://doi.org/10.5154/r.rchscfa.2010.11.112

Abstract

Growth and macro and micronutrient contents of Pinus greggii Engelm. inoculated with the edible ectomycorrhizal mushroom Hebeloma mesophaeum (Pers.) Quél. was evaluated. The experiment consisted of two treatments: plants inoculated with H. mesophaeum and non-inoculated plants. Results showed that shoot and root dry weight, shoot height, stem diameter, and total contents of N, P, K, Ca and Mg were higher in inoculated plants than in non-inoculated plants. P and Mg contents were 6.7 and 6.9 times respectively higher in the shoot of inoculated plants in comparison to noninoculated plants. Additionally, H. mesophaeum originated a high translocation efficiency of P, K and Mg to the shoot. The percentage of mycorrhization was high (79.5 %); more than half of it being observed in the central part of the root ball in the plant containers. Therefore, inoculation with H. mesophaeum has a great potential to be used in the production of P. greggii plants under greenhouse conditions.

https://doi.org/10.5154/r.rchscfa.2010.11.112
PDF

References

Agerer, R. (1994). Characterizacion of ectomycorrhiza. In J. R. Norris, D. J. Read, & A.K. Varma (Eds.), Techniques for the Study of Mycorrhiza (pp. 25‒73). London: Academic Press.

Allen, S. E., Grimshaw, H. M., Parkinson, J.A. & Quarmbym, C. (1997). Chemical analysis of ecological materials. Oxford, UK: Blackwell Scientific Publications

Alves, L., Oliveira, V. L., & Germano, N. S. F. (2010). Utilization of rocks and ectomycorrhizal fungi to promote growth of eucalypt. Brazilian Journal of Microbiology, 41, 676‒684. doi: https://doi.org/10.1590/S1517-83822010000300018

Bandou, E., Lebailly, F., Muller, F., Dulormne, M., & Toribio, A. (2006). The ectomycorrhizal fungus Scleroderma bermudense alleviates salt stress in seagrape (Coccoloba uvifera L.) seedlings. Mycorrhiza, 16, 559‒565. doi: https://doi.org/10.1007/s00572-006-0073-6

Boa, E. (2004). Wild edible fungi: A global overview of their use and importance to people. Rome: Food and Agriculture Organization of the United Nations. (FAO). http://www.fao.org/docrep/007/y5489e/y5489e00.htm

Bremner, J. M. (1965). Total nitrogen. In C. A. Black (Ed.), Methods of soil analysis (pp. 1149-1178). Madison, Wisconsin: American Society of Agronomy.

Christophe, C., Turpault, M., Uroz, S., Leclerc, E., Kies A., & Frey-Klett P. (2010). Laccaria bicolor S238N improves Scots pine mineral nutrition by increasing root nutrient uptake from soil minerals but does not increase mineral weathering. Plant Soil, 328, 145‒154. doi: https://doi.org/10.1007/s11104-009-0092-0

Danell, E., & Camacho, F. J. (1997). Successful cultivation of the golden chanterelle. Nature, 385, 303. doi: https://doi.org/10.1038/385303a0

Debaud, J. C., & Gay, G. (1987). In vitro fruiting under controlled conditions of the ectomycorrhizal fungus Hebeloma cylindrosporum associated with Pinus pinaster. New Phytologist, 105, 429‒436. doi: https://doi.org/10.1111/j.1469-8137.1987.tb00880.x

Deemy. (2008). Characterization and determination of ectomycorrhizae. http://www.deemy.de/

Domínguez, N. J. A., Planelles, R., Rodríguez, B. J. A., & Saiz de Omeñaca, J. A. (2004). Influencia de la micorrización con trufa negra (Tuber melanosporum) en el crecimiento, intercambio gaseoso y nutrición mineral de plántulas de Pinus halepensis. Investigación agraria. Sistemas y recursos forestales, 13, 317‒327.

Duñabeitia, M. K., Hormilla, S., García-Plazaola, J. I., Txarterina, K., Arteche, U., & Becerril, J. M. (2004). Differential responses of three fungal species to environmental factors and their role in the mycorrhization of Pinus radiata D. Don. Mycorrhiza, 14, 11‒18. doi: https://doi.org/10.1007/s00572-003-0270-5

Javelle, A., Morel, M., Rodríguez-Pastrana, B. R., Botton, B., André B., Marini A. M., Brun A., & Chalot, M. (2003). Molecular characterization, function and regulation of ammonium transporters (Amt) and ammonium-metabolizing enzymes (GS, NADP-GDH) in the ectomycorrhizal fungus Hebeloma cylindrosporum. Molecular Microbiology, 47, 411‒430 doi: https://doi.org/10.1046/j.1365-2958.2003.03303.x

Jentschke, G., Brandes, B., Kuhn, A. J., Schröder, W. H., Becker, J. S., & Godbold, D. L. (2000). The mycorrhi-zal fungus Paxillus involutus transports magnesium to Norway spruce seedlings. Evidence from stable isotope labeling. Plant and Soil, 220, 243‒246. doi: https://doi.org/10.1023/A:1004727331860

Jentschke, G., Brandes, B., Kuhn, A. J., Schröder, W. H., & Godbold D. L. (2001). Interdependence of phosphorus, nitrogen, potassium and magnesium translocation by the ectomycorrhizal fungus Paxillus involutus. New Phytologist, 149, 327‒337. doi: https://doi.org/10.1046/j.1469-8137.2001.00014.x

Kropp, B. R. (1997). Inheritance of the ability for ectomycorrhizal colonization of Pinus strobus by Laccaria bicolor. Mycologia, 89, 578‒585.

Louche, J., Arif, A. M., Cloutier-Hurteau, B., Sauvage, F. X., Quiquampoix, H., & Plassard, C. (2010). Effciency of acid phosphatases secreted from the ectomycorrhizal fungus Hebeloma cylindrosporum to hydrolyse organic phosphorus in podzols. FEMS Microbiology Ecology, 73, 323‒335. doi: https://doi.org/10.1111/j.1574-6941.2010.00899.x

Parladé, J., Pera, J., & Alvarez, I. F. (1996). Inoculation of containerized Pseudotsuga menziesii and Pinus pinaster seedlings with spores of five species of ectomycorrhizal fungi. Mycorrhiza, 6, 237‒245. doi: https://doi.org/10.1007/s005720050131

Pérez-Moreno, J., & Read, D., J. (2000). Mobilization and transfer of nutrients from litter to tree seedlings via the vegetative mycelium of ectomycorrhizal plants. New Phytologist, 145, 301‒309. doi: https://doi.org/10.1046/j.1469-8137.2000.00569.x

Pérez-Moreno, J., Martínez-Reyes, M., Yescas-Pérez, A., Delgado-Alvarado, A., & Xoconostle-Cázares, B. (2008). Wild mushroom markets in Central Mexico and a case study at Ozumba. Economic Botany, 62, 425‒436 doi: https://doi.org/10.1007/s12231-008-9043-6

Ramírez-Herrera, C., Vargas H. J. J., & López-Upton J. (2005). Distribución y Conservación de las poblaciones naturales de Pinus greggii. Acta Botánica Mexicana, 72, 1‒16

Read, D. J., & Pérez-Moreno, J. (2003). Mycorrhizas and nutrient cycling in ecosystems – a journey towards relevance? New Phytologist, 157, 475‒492. doi: https://doi.org/10.1046/j.1469-8137.2003.00704.x

Sánchez, J. E., Pérez-Moreno, J., Mata G., Salmones, D., & Leal-Lara, H. (2012). Los hongos comestibles en México. In J. Álvarez-Sánchez, A. Alarcón, & M. P. Rodríguez-Guzmán (Eds.), Biodiversidad microbiana de México. México, D.F.: UNAM (en prensa).

Statistical Analysis System Institute (SAS). (1999). SAS User´s Guide, versión 8.0. Cary, N. C.: SAS Institute Inc.

Tibbett, M., & Sanders, F. E. (2002). Ectomycorrhizal symbiosis can enhance plan nutrition trough improved access to discrete organic nutrient patches of high resource quality. Annals of Botany, 89, 783‒789. doi: https://doi.org/10.1093/aob/mcf129

Übel, E., & Heinsdorf, D. (1997). Results of long-term K and Mg fertilizer experiments in afforestation. Forest Ecology Management, 91, 47‒52. doi: https://doi.org/10.1016/S0378-1127(96)03882-0

Wang, Y., & Hall, I. R. (2004). Edible ectomycorrhizal mushrooms: Challenges and achievements. Canadian Journal

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2012 Revista Chapingo Serie Ciencias Forestales y del Ambiente