Revista Chapingo Serie Ciencias Forestales y del Ambiente
POTENTIAL USE OF HUIZACHE (Acacia farnesiana L. Will) IN PHYTOREMEDIATION OF LEAD-CONTAMINATED SOILS
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF

Keywords

Pollution
lead
phytoextraction
photosynthesis
Acacia farnesiana

How to Cite

Landeros-Márquez, O. ., Trejo-Calzada, R. ., Reveles-Hernández, M. ., Valdez-Cepeda, R. D. ., Arreola-Ávila, J. G. ., Pedroza-Sandoval, A. ., & Ruíz-Torres, J. . (2011). POTENTIAL USE OF HUIZACHE (Acacia farnesiana L. Will) IN PHYTOREMEDIATION OF LEAD-CONTAMINATED SOILS. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 17(Especial), 11–20. https://doi.org/10.5154/r.rchscfa.2010.08.059

Abstract

Several studies have been carried out in order to identify the effects of heavy metals in cultivated plants and in some species considered as hyperaccumulators. However, little efforts have been per¬formed on assessment of native species in arid areas for phytoremediation. The current study was carried out ex situ in order to evaluate lead phytoextraction rate in Acacia farnesiana L. Will. Young plants (n=48) were placed in plastic pots, in which a combination of three concentrations of lead was added (0, 250 y 500 mg•kg-1) in the form of Pb(NO3)2 and four nitrogen doses (0, 100, 300 y 500 mg•kg-1) in the form of phospho-nitrate (33-03-00). Photosynthetic rate and lead concentration in root, stem and leaf were evaluated. Nitrogen doses and lead concentrations separately didn’t provoke significant differences in photosynthetic rate of acacia plants, however, the interaction between these factors was statistically significant (P=0.0074), observing that the highest accumulation of lead was in aerial parts of the plants with a mean of 352.34 mg•kg-1.

https://doi.org/10.5154/r.rchscfa.2010.08.059
PDF

References

ATHANASIOU, K.; DYSON, B.; WEBSTER, R. E.; JOHNSON, G. N. 2010. Dynamic Acclimation of photosynthesis increases plant fitness in changing environments. Plant Physiology 152: 366-373. doi: https://doi.org/10.1104/pp.109.149351

BROWN, S. L.; CHANEY, R. L.; HALLFRISCH, J. G.; QI XUE. 2003. Effect of Biosolids Processing On Lead Bioavailability in an Urban Soil. Environ. Qual. 32: 100-108.

CARMONA-HERNÁNDEZ, D.; TREJO-CALZADA, R.; ESQUIVEL-ARRIAGA, O.; ARREOLA-ÁVILA, J. G.; FLORES- HERNÁNDEZ, A. 2007. Evaluación de un método para medir fotosíntesis en mezquite (Prosopis glandulosa). Revista Chapingo Serie Zonas Áridas 6: 185-190. http://www.chapingo.mx/revistas/zonas_aridas/contenido.php?id_articulo=1005?id_revistas=8?id_revista_numero=95

CHANEY, R. L.; MALIK, M.; LI, Y. M.; BROWN, S. L.; BREWER, E. P.; ANGLE, J. S.; BAKER, A. J. M. 1997. Phytoremediation of soils metals. Current Opinion in Biotechnology 8(3): 279-284.

CHAU, K. A.; RIKLUND, R.; SILVA, A. F. 1980. Roles of the lower and the upper Hubbard bands and the donorexcited states in the theory of shallow-impurity states in doped semiconductors. Phys. Rev. B. 21: 5745- 5748.

EPSTEIN, A. L.; GUSSMAN, C. D.; BLAYLOCK, M. J.; YERMIYAHU, U.; HUANG, J. W.; KAPULNIK, Y.; ORSER, C. S. 1999. EDTA and Pb-EDTA accumulation in Brassica juncea grown in Pb-amended soil. Plant and Soil. 208: 87-94.

HUANG, J. W.; CHEN, J.; BERTI, W. R.; CUNNINGHAM, S. D. 1997. Phytoremediation of lead contaminated soil: role of synthetic chelates in lead phytoextraction. Environmental Science and Technology 31(3): 800-805.

JIAN, W.; LIU, D. 2010. Pb-induced cellular defense system in the root meristematic cells of Allium sativum L. BMC Plant Biology 10: 40. doi: https://doi.org/10.1186/1471-2229-10-40

KHAN, A. G.; KUEK, C.; CHAUDHRY, T. M.; KHOO, C. S.; HAYES, W. J. 2000. Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere 41: 197–207.

LASAT, M. M. 2000. Phytoextraction of metals from contaminated soil: A Review of plant/soil/metal interaction and assessment of pertinent agronomic issues. Journal of Hazardous Subtance Research 2(5): 1-25.

LASAT, M. M. 2002. Phytoextraction of Toxic Metals: A Review of Biological Mechanisms. Journal of Environmental Quality 31(1): 109-120.

MILNER, M. J.; KOCHIAN, L. V. 2008. Investigating heavymetal hyperaccumulation using Thlaspi caerulescens as a model system. Annals of Botany 102: 3-13. doi: https://doi.org/10.1093/aob/mcn063

MINITAB, Inc. 2000. MINITAB 14 Statistical Software. State College, PA, USA.

MITEVA, E.; MANEVA, S.; HRISTOVA, D.; BOJINOVA, P. 2001. Heavy metal accumulation in virus-infected tomatoes. J. Phytopatol.149: 179-184.

MEAGHER, R. B. 2000.Phytoremediation of toxic elemental and organic pollutants.Curr Opin. Plant Biol. 3: 153-162.

McGOWEN, S. L.; BASTA, N. T.; BROWN, G. O. 2001. Use of diammonium phosphate to reduce heavy metal solubility and transport in smelter contaminated Soil. J. Environ. Qual. 30: 493-500. http://www.ncbi.nlm.nih.gov/pubmed/11285910

RODRÍGUEZ-ORTÍZ, J. C.; VALDEZ-CEPEDA, R. D.; LARA-MIRELES, J. L.; RODRÍGUEZ-FUENTES, H.; VÁZQUEZ-ALVARADO, R. E.; MAGALLANESQUINTANAR, R.; GARCÍA-HERNÁNDEZ, J. L. 2006. Soil nitrogen fertilization effects on phytoextraction of Cd and Pb by tobacco (Nicotiana tabacum L.). Bioremediation Journal 10(3): 105-114.

ROSSEL, J. B.; WILSON, P. B.; HUSSAIN, D.; WOO, N.; GORDON, M. J.; MEWETT, O. P.; HOWELL, K. A.; WHELAN, J.; KAZAN, POGSON, B. J. 2007. Systemic and intracellular responses to photooxidative stress. The Plant Cell 19: 4091-4110. http://www.ncbi.nlm.nih.gov/pubmed/18156220

SEMARNAT. 2002. Norma Oficial Mexicana NOM- 021-SEMARNAT-2000 que establece las especificaciones de fertilidad, salinidad y clasificación de suelos, estudio, muestreo y análisis. Diario Oficial de la Federación. México.

SALT, D. E.; BLAYLOCK, M.; KUMAR, N. P. B. A.; DUSHENKOV, V.; ENSLEY, D.; CHET, I.; RASKIN, I. 1995. Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 13: 468-474.

SALT, D. E.; SMITH, R. D.; RASKIN, I. 1998. Phytoremediation. Ann Rev Plant Physiol Plant Mol. Biol. 49:643- 668.

STATISTICAL ANALYSIS SYSTEMINSTITUTE INC. 2004. SAS/STAT9.1.User's Guide Cary NC, USA. 5136 pp.

TREJO-CALZADA, R.; GARCÍA, N. C.; VALDEZ-CEPEDA, R. D.; FLORES-HERNÁNDEZ, A.; ARREOLA-ÁVILA, J. G. 2007. Análisis de la variación espacial de plomo en suelos del área de Bermejillo, Dgo. En: CADENA ZAPATA, M., LÓPEZ SANTOS, A. Y RAMÍREZ SEGOVIANO, R. (Eds). Oportunidades y retos de la ingeniería agrícola ante la globalización y el cambio climático. Unidad Regional Universitaria de Zonas Áridas, Universidad Autónoma Chapingo. Bermejillo, Durango, México. pp. 120-129.

VALDÉS, P. F.; CABRERA M. V. 1999. La contaminación por metales pesados en Torreón, Coahuila. Texas Center for Policy Studies. En Defensa del Ambiente A.C Torreón Coahuila. 46 pp.

VAN DER LELIE, D.; LESAULNIER, C.; MCCORKLE, S.; GEETS, J.; TAGHAVI, S.; DUNN, J. 2006. Use of Single-Point Genome Signature Tags as a universal tagging method for microbial genome surveys. Appl. Environ. Microbiol. 72: 2092-2101. http://www.ncbi.nlm.nih.gov/pubmed/16517658

VASSIL, A. D.; KAPULNIK, Y.; RASKIN, I.; SALT, D. E. 1998. The role of EDTA in lead transport and accumulation in Indian mustard Plant Physiol. 117: 447–453.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2011 Revista Chapingo Serie Ciencias Forestales y del Ambiente