Revista Chapingo Serie Ciencias Forestales y del Ambiente
EFFECT OF VEGETATION ON PRECIPITATION INTERCEPTION IN THE ANDEAN FOOTHILLS OF THE MAULE REGION, CHILE
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF

Keywords

Water balance
vegetation cover
Maule region

How to Cite

Vallejos-Barra, O. S. ., Pizarro-Tapia, R. M. ., Vásquez Sandoval, M. A. ., Balocchi-Contreras, F. J. ., Morales-Calderón, C. M. ., León-Gutiérrez, L. ., & Vega-Torres, L. P. . (2010). EFFECT OF VEGETATION ON PRECIPITATION INTERCEPTION IN THE ANDEAN FOOTHILLS OF THE MAULE REGION, CHILE. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 16(2), 207–214. https://doi.org/10.5154/r.rchscfa.2010.03.012

Abstract

This study compared the behavior of an Oak-Hualo secondary forest, where the dominant species are Nothofagus obliqua and Nothofagus glauca, with that of a 12-year-old Pinus radiata D. Don plantation in the precipitation-interception process. The study was conducted at the El Picazo Experimental Station in the town of San Clemente, Maule region, between July 2007 and July 2008 in two neighboring small-scale sub-watersheds with similar soil, exposure and slope conditions, but with different vegetation covers. The vegetation of each watershed was characterized and the plot density indicators obtained. The native cover indicators greatly surpassed those of the exotic covers. To record precipitation, two Hobo rain gauges were placed in each sub-watershed. Equidistant from these, another rain gauge was set up without vegetation cover. In total, 21 storms were recorded, characterizing temporally and spatially open and under-canopy precipitation behavior. The results indicate that although the vegetation covers have numerical differences, these do not translate into statistically significant differences. In addition, it was found that interception depends more on crown architecture, spatial distribution of the trees and type of leaves than on the number of trees per plot.

https://doi.org/10.5154/r.rchscfa.2010.03.012
PDF

References

CALDER, I. 1998. Water use by forests, limits and controls. Tree Physiology 18: 625-631. http://treephys.oxfordjournals.org/content/18/8-9/625.full.pdf

CONOVER, W. 1999. Practical nonparametric statistics. Tercera edición, New York: John Wiley & Sons Inc., 584 p.

ERRÁZURIZ, A. 1987. Manual de geografía de Chile. Editorial Andrés Bello. Santiago. Chile. 415 p.

FELLER, M. 1981. Water balance in Eucalyptus regnans, E. oblicua, y Pinus radiata forest in Victoria. Australian Forestry 44 (3): 153-161.

HUBER, A.; IROUMÉ, A. 2001. Variability of annual rainfall partitioning for different sites and forest covers in Chile. Journal of Hydrology 248(1-4): 78-92. doi: https://doi.org/10.1016/S0022-1694(01)00394-8

HUBER, A.; IROUMÉ, A.; BATHURST, J. 2008. Effect of Pinus radiata plantations on water balance in Chile. Hydrol. Process 22: 142–148. doi: https://doi.org/10.1002/hyp.6582

HUBER, A.; LÓPEZ, D. 1993. Cambios en el balance hídrico provocados por la tala rasa de un rodal adulto de Pinus radiata D. Don, Valdivia, Chile. Bosque 14(2): 11-18.

HUBER, A.; TRECAMAN, R. 2000 El efecto de las características de una plantación de Pinus radiata en la distribución espacial del contenido de agua edáfica. Bosque 21 (1): 37-44.

IROUMÉ, A.; HUBER, A. 2002. Comparison of interception losses in a broadleaved native forest and a Pseudotsuga menziesii (Douglas fir) plantation in the Andes Mountains of southern Chile. Hydrol. Process. 16, 2347–2361 doi: https://doi.org/10.1002/hyp.1007

KOMATSU, H.; KUME, T.; OTSUKI, K. 2009. Changes in low flow with the conversion of a coniferous plantation to a broad-leaved forest in a summer precipitation region, Japan. Ecohydrology 2(2): 164-172. doi: https://doi.org/10.1002/eco.50

KOMATSU, H.; SHINOHARA, Y.; KUME, T.; OTSUKI, K. 2008. Relationship between annual rainfall and interception ratio for forests across Japan. Forest Ecology and Management 256 (5): 1189-1197. doi: https://doi.org/10.1016/j.foreco.2008.06.036

MANUBAG, J. 1985. Rainfall interception, surface runoff and sedimentation of dipterocarp stand, mixed forest and grassland at the Central Mindanao University forest reservation. Journal of agriculture. Food and Nutrition 7(1): 43-54.

PIZARRO, R.; SANTIBAÑEZ, F.; BENÍTEZ, A.; JORDÁN, C.; FARÍAS, C. 2005. Influencia de las masas boscosas en el régimen hídrico de una cuenca sub húmeda, Chile. Ingeniería Hidráulica en México 20(3): 7-20.

PUTUHENA, W; CORDERY, I. 2000. Some hydrogical effects of changing forest cover from eucalypts to pinus radiata. Agricultural and Forest Meteorology 100(1): 59 – 72. http://directory.umm.ac.id/Data%20Elmu/jurnal/A/Agricultural%20%26%20Forest%20Meterology/Vol100.Issue1.Janu2000/2687.pdf

SHARDA, V. 1988. Hydrological behaviour of the Nilgiri sub-watersheds as affected by bluegum plantations, part II, monthly water balances at different rainfall and runoff probabilities. Journal of Hydrology 103(3-4): 347-355. doi: https://doi.org/10.1016/0022-1694(88)90143-6

SHIBUYA, K. 1983. Researches on the change in rainfall-runoff relation after converting woodland into pasture in the Kitami mountainous area. Technical report of the National Research Institute of Agriculture Engineering 1: 1-25. Japón.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2010 Revista Chapingo Serie Ciencias Forestales y del Ambiente