Revista Chapingo Serie Ciencias Forestales y del Ambiente
Carbon sequestration potential in Retrophyllum rospigliosii (Pilg.) C. N. Page plantations for restoration purposes in the Colombian Andean region
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF

Keywords

aboveground biomass
belowground biomass
allometric equations
Husch model
Podocarpaceae

How to Cite

Ruiz-Erazo, C. E., Riascos-Acosta, R. I., Guerrero-Martínez, E. S., Marín-Vélez, A. M., Sierra, C. A., & Ramírez-Correa, J. A. (2025). Carbon sequestration potential in Retrophyllum rospigliosii (Pilg.) C. N. Page plantations for restoration purposes in the Colombian Andean region. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 31, e24009. https://doi.org/10.5154/r.rchscfa.2024.04.009

Abstract

Introduction: Podocarpaceae is the only family of native conifers in the tropical Andes. In Colombia, Retrophyllum rospigliosii (Pilg.) C. N. Page is significant due to its wide geographic distribution; however, no biomass and carbon equations exist for this species.
Objective: To estimate the carbon capture potential of mature R. rospigliosii plantations established for restoration purposes.
Materials and methods: Thirty trees were selected based on diameter distribution of trees to evaluate stem volume and aboveground biomass, and 12 trees were analyzed to assess belowground biomass and carbon content in tree components (stem, branches, leaves, and roots). The variables—volume, biomass, and carbon—were correlated with diameter at breast height and total height using Husch and Spurr models.
Results and discussion: The adjusted models achieved R2 values greater than 94 %. The stem provided the highest percentage of biomass, followed by coarse roots, branches, fine roots, and leaves. Carbon content in R. rospigliosii components ranged between 41.08 % and 49.97 %. Over a 20-year period, high-density monoculture  plantations (1666 trees·ha-1) of R. rospigliosii were estimated to produce 316.26 ± 187.26 Mg∙ha-1 of biomass and sequester 156.08 ± 92.80 Mg· Mg∙ha-1 of carbon.
Conclusion: Biomass and carbon sequestration of R. rospigliosii in plantations were relatively low compared to individuals in natural forests. The models indicate the low productivity of this species in terms of carbon sequestration.

https://doi.org/10.5154/r.rchscfa.2024.04.009
PDF

References

Affleck, D. L. R. (2019). Aboveground biomass equations for the predominant conifer species of the Inland Northwest USA. Forest Ecology and Management, 432, 179—188. https://doi.org/10.1016/j.foreco.2018.09.009

Alvarez, E., Duque, A., Saldarriaga, J., Cabrera, K., de las Salas, G., del Valle, I., Lema, A., Moreno, F., Orrego, S., & Rodríguez, L. (2012). Tree above-ground biomass allometries for carbon stocks estimation in the natural forests of Colombia. Forest Ecology and Management, 267, 297—308. https://doi.org/10.1016/j.foreco.2011.12.013

Araujo, E. C. G., Sanquetta, C. R., Dalla Corte, A. P., Pelissari, A. L., Orso, G. A., & Silva, T. C. (2023). Global review and state-of-the-art of biomass and carbon stock in the Amazon. Journal of Environmental Management, 331, 117251. https://doi.org/10.1016/j.jenvman.2023.117251

Baker, T. R., Phillips, O. L., Malhi, Y., Almeida, S., Arroyo, L., Di Fiore, A., Erwin, T., Killeen, T. J., Laurance, S. G., & Laurance, W. F. (2004). Variation in wood density determines spatial patterns in Amazonian forest biomass. Global Change Biology, 10(5), 545—562. https://doi.org/10.1111/j.1365-2486.2004.00751.x

Carrillo, F., Acosta Mireles, M., Flores Ayala, E., Juárez Bravo, J. E., & Bonilla Padilla, E. (2014). Estimación de biomasa y carbono en dos especies arbóreas en La Sierra Nevada, México. Revista Mexicana de Ciencias Agrícolas, 5(5), 779—793. https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid =S2007-09342014000500005

Carrillo, F., Acosta Mireles, M., Jiménez Cruz, C. del R., González Molina, L., & Etchevers Barra, J. D. (2016). Ecuaciones alométricas para estimar la biomasa y el carbono de la parte aérea de Pinus hartwegii en el Parque Nacional Ixta-Popo, México. Revista Mexicana de Ciencias Agrícolas, 7(3), 681—691. https://doi.org/10.29312/remexca.v7i3.327

Chave, J., Réjou-Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M. S., Delitti, W. B. C., Duque, A., Eid, T., Fearnside, P. M., Goodman, R. C., Henry, M., Martínez-Yrízar, A., Mugasha, W. A., Muller-Landau, H. C., Mencuccini, M., Nelson, B. W., Ngomanda, A., Nogueira, E. M., Ortiz-Malavassi, E., … Vieilledent, G. (2014). Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology, 20(10), 3177—3190. https://doi.org/10.1111/ gcb.12629

Chojnacky, D. C., Heath, L. S., & Jenkins, J. C. (2014). Updated generalized biomass equations for North American tree species. Forestry, 87(1), 129—151. https://doi.org/10.1093/forestry/cpt053

Cogollo, A., Velásquez-Rúa, C., Toro, J. L., & García, N. (2007). Las podocarpáceas. In N. García (Ed.), Libro rojo de plantas de Colombia (vol. 5): Las magnoliáceas, las miristicáceas y las podocarpáceas (pp. 193—224). Instituto Alexander von Humboldt, Corporación Autónoma Regional del Centro de Antioquia, Jardín Botánico Joaquín Antonio Uribe de Medellín, Instituto de Ciencias Naturales de la Universidad Nacional de Colombia, Ministerio de Ambiente, Vivienda y Desarrollo Territorial. https://www.researchgate.net/publication/279204794_Libro_Rojo_de_Plantas_de_Colombia_Volumen_5_Las_magnolias_ las_miristicaceas_y_las_podocarpaceas

Cook, R. L., Binkley, D., Mendes, J. C. T., & Stape, J. L. (2014). Soil carbon stocks and forest biomass following conversion of pasture to broadleaf and conifer plantations in southeastern Brazil. Forest Ecology and Management, 324, 37–45. https://doi.org/10.1016/j.foreco.2014.03.019

Correia, A. C., Faias, S. P., Ruiz-Peinado, R., Chianucci, F., Cutini, A., Fontes, L., Manetti, M. C., Montero, G., Soares, P., & Tomé, M. (2018). Generalized biomass equations for Stone pine (Pinus pinea L.) across the Mediterranean basin. Forest Ecology and Management, 429, 425—436. https://doi.org/10.1016/j.foreco.2018.07.037

Federici, S., Tubiello, F. N., Salvatore, M., Jacobs, H., & Schmidhuber, J. (2015). New estimates of CO2 forest emissions and removals: 1990–2015. Forest Ecology and Management, 352, 89—98. https://doi.org/10.1016/j.foreco.2015.04.022

Fonseca-González, W., Rojas Vargas, M., Villalobos Chacón, R., & Alice Guier, F. (2023). Estimation of the biomass and carbon in Cupressus lusitanica Mill. trees in Costa Rica. Revista de Ciencias Ambientales, 57(2), 18330. http://doi.org/10.15359/rca.57-6

Gardner, M., & Thomas, P. (2013). Retrophyllum rospigliosii. The IUCN Red List of Threatened Species 2013: E. T34110A2846471. https://doi.org/10.2305/IUCN.UK.2013-1.RLTS.T34110A2846471

Griscom, B. W., Adams, J., Ellis, P. W., Houghton, R. A., Lomax, G., Miteva, D. A., Schlesinger, W. H., Shoch, D., Siikamäki, J. V., Smith, P., Woodbury, P., Zganjar, C., Blackman, A., Campari, J., Conant, R. T., Delgado, C., Elias, P., Gopalakrishna, T., Hamsik, M. R., …Fargione, J. (2017). Natural climate solutions. Proceedings of the National Academy of Sciences, 114(44), 11645—11650. https://doi.org/10.1073/pnas.1710465114

Han, S. H., & Park, B. B. (2020). Comparison of allometric equation and destructive measurement of carbon storage of naturally regenerated understory in a Pinus rigida plantation in South Korea. Forests, 11(4), 425. https://doi.org/10.3390/f11040425

Hernández-Ramos, J., Santos-Posadas, H. M. D., Valdez-Lazalde, J. R., Tamarit-Urias, J. C., Ángeles-Pérez, G., Hernández-Ramos, A., Peduzzi, A., & Carrero, O. (2017). Biomasa aérea y factores de expansión en plantaciones forestales comerciales de Eucalyptus urophylla S. T. Blake. Agrociencia, 51(8), 921—938. https://www.agrociencia-colpos.org/index.php/agrociencia/article/view/1336

Hernández-Vera, D., Pompa-García, M., Yerena-Yamallel, J. I., & Alanís-Rodríguez, E. (2017). Within-tree carbon concentration variation in three Mexican pine species. Bosque (Valdivia), 38(2), 381–386. https://doi.org/10.4067/S0717-92002017000200015

Holdridge, L. R. (1982). Ecologia basada en zonas de vida. Instituto Interamericano de Cooperación para la Agricultura.

Intergovernmental Panel on Climate Change (IPCC). (2019). 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Institute for Global Environmental Strategies. https://www.ipcc.ch/report/2019-refinement-to-the-2006-ipcc-guidelines-for-national-greenhouse-gas-inventories/

Kershaw, J. A., Ducey, M. J., Beers, T. W., & Husch, B. (2017). Forest mensuration (5th edition). John Wiley & Sons, Ltd.

Kiviste, A., Álvarez-González, J. G., Rojo-Alboreca, A., & Ruiz, A. D. (2002). Funciones de crecimiento de aplicación en el ámbito forestal. Monografías INIA.

Liu, B., Bu, W., Zang, R. (2023). Improved allometric models to estimate the aboveground biomass of younger secondary tropical forests. Global Ecology and Conservation, 41, e02359. http://doi.org/10.1016/j.gecco.2022.e02359

Loetsch, F., Zöhrer, F., & Haller, K. (1973). Forest inventory (2nd ed.). BLV Verlagsgesellschaft.

López, H. G., Vaides, E. E., & Alvarado, A. (2018). Evaluación de carbono fijado en la biomasa aérea de plantaciones de teca en Chahal, Alta Verapaz, Guatemala. Agronomía Costarricense, 42(1), 137–153. http://doi.org/10.15517/rac.v42i1.32201

Marín, A. (1998). Ecología y silvicultura de las Podocarpáceas andinas de Colombia. Smurfit Cartón de Colombia.

Nguyen, H., Firn, J., Lamb, D., & Herbohn, J. (2014). Wood density: A tool to find complementary species for the design of mixed species plantations. Forest Ecology and Management, 334, 106– 113. https://doi.org/10.1016/j.foreco.2014.08.022.

Ortega, G., & Muñoz, V. (2020). Rescatando la biodiversidad colombiana. Nuestra flora como escenario del bicentenario de la campaña libertadora. Ministerio de Ambiente y Desarrollo Sostenible de Colombia. https://www.minambiente.gov.co/wp-content/uploads/2022/06/ RESCATANDO-LA-BIODIVERSIDAD.-FAUNA-Nov.-84.pdf

Picard, N., Saint-André, L., & Henry, M. (2012). Manual for building tree volume and biomass allometric equations: from field measurement to prediction. Food and Agricultural Organization of the United Nations, Centre de Coopération Internationale en Recherche Agronomique pour le Développement. https://www.fao.org/4/ i3058e/i3058e.pdf

Pompa-García, M., Sigala-Rodríguez, J. A., Jurado, E., & Flores, J. (2017). Tissue carbon concentration of 175 Mexican forest species. iForest - Biogeosciences and Forestry, 10(4), 754. https://doi.org/10.3832/ifor2421-010

Portillo, P. R., Cueva, N., Sierra, J. C., & Vásquez, Á. M. (2019). Propiedades físico mecánicas del Retrophyllum rospigliosii (Pilger) CN Page de 22 años en dos sistemas de plantación en Colombia. Revista Forestal del Perú, 34(1), 41—51. http://doi.org/10.21704/rfp.v34i1.1284

R Core Team. (2023). R: A language and environment for statistical computing. [software]. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

Ramírez, J. A., Marín, A., Urrego, J. B., Castaño, Á., & Ospina, R. (2021). Efecto de la fertilización en el crecimiento de Retrophyllum rospigliosii de la zona andina colombiana. Madera y Bosques, 27(3), e2732315. https://doi.org/10.21829/myb.2021.2732315

Rodríguez, G., García, J. Á., Leyva, J. C., Ruiz, C., Enríquez, J. R., & Santiago, W. (2019). Biomasa estructural y por compartimentos en regeneración de Pinus patula en áreas con matarrasa. Madera y Bosques, 25(1), e2511713. https://doi.org/10.21829/myb.2019.2511713

Sanquetta, C. R., Corte, A. P., & da Silva, F. (2011). Biomass expansion factor and root-to-shoot ratio for Pinus in Brazil. Carbon Balance and Management, 6(1), 6. https://doi.org/10.1186/1750-0680-6-6

Temesgen, H., Affleck, D., Poudel, K., Gray, A., & Sessions, J. (2015). A review of the challenges and opportunities in estimating above ground forest biomass using tree-level models. Scandinavian Journal of Forest Research, 30(4), 326—335. https://doi.org/10.1080/02827581.2015.1012114

Teobaldelli, M., Somogyi, Z., Migliavacca, M., & Usoltsev, V. A. (2009). Generalized functions of biomass expansion factors for conifers and broadleaved by stand age, growing stock and site index. Forest Ecology and Management, 257(3), 1004—1013. https://doi.org/10.1016/j.foreco.2008.11.002

Yaguana, C., Lozano, D., Neill, D., & Asanza, M. (2012). Diversidad florística y estructura del bosque nublado del río Numbala, Zamora-Chinchipe, Ecuador: El “bosque gigante” de Podocarpaceae adyacente al Parque Nacional Podocarpus. Revista Amazónica: Ciencia y Tecnología, 1(3), 226–247. https://doi.org/10.59410/RACYT-v01n03ep05-0019

Yeboah, D., Burton, A. J., Storer, A. J., & Opuni-Frimpong, E. (2014). Variation in wood density and carbon content of tropical plantation tree species from Ghana. New Forests, 45(1), 35–52. https://doi.org/10.1007/s11056-013-9390-8

Yepes, A., Sierra, A., Niño, L. M., López, M., Garay, C., Cabrera, E., & Barbosa, A. (2016). Biomasa y carbono total almacenado en robledales del sur de los Andes Colombianos: Aportes para el enfoque REDD+ a escala de proyectos. Revista de Biología Tropical, 64(1), 399—412. https://doi.org/10.15517/rbt. v64i1.18221

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2025 Revista Chapingo Serie Ciencias Forestales y del Ambiente