Abstract
Introduction. Reforestation and restoration of forest ecosystems are increasingly difficult with climate change. Objective. Define seed transfer zones for reforestation in the Monarch Butterfly Biosphere Reserve and the ‘Sembrando Vida’ program in the Meseta Purépecha to mitigate climate change.
Materials and methods. Maps were generated to visualize where the ideal climate conditions for reforestation are projected to occur (RCP 4.5 scenario, 2050) at different sites using seedlings collected in delimited areas under a reference climate (1961-1990). A climate zone system was used (based on the temperature of the coldest month and an aridity index) and layers of suitable climatic habitat for Pinus pseudostrobus and Abies religiosa for the reference (1961-1990) and projected (2060 decade) period.
Results and discussion. The areas to be reforested will be warmer in the future, requiring seed from sites, on average, 3 °C warmer. A reduction of approximately 50 % of the area of climatically favorable habitat for P. pseudostrobus and A. religiosa was estimated. This reduction occurs at the lower altitudinal limit called the ‘xeric limit’; therefore, it will be necessary to replace them with species adapted to warmer sites.
Conclusions. Moving seed sources from warmer (+3 °C) and drier sites to currently wetter and cooler planting sites is recommended. This provides a useful tool for deciding the seed source under adaptive forest management facing climate change.
References
Astudillo-Sánchez, C. C., Villanueva-Díaz, J., Endara-Agramont, A. R., Nava-Bernal, G. E., & Gómez-Albores, M. Á. (2017). Influencia climática en el reclutamiento de Pinus hartwegii Lindl. del ecotono bosque-pastizal alpino en Monte Tláloc, México. Agrociencia, 51(1), 105—118. https://www.scielo.org.mx/pdf/agro/v51n1/1405-3195-agro-51-01-00105.pdf
Bower, A. D., Clair, J. B. S., & Erickson, V. (2014). Generalized provisional seed zones for native plants. Ecological Applications, 24(5), 913—919. https://doi.org/10.1890/13-0285.1
Carbajal-Navarro, A., Navarro-Miranda, E., Blanco-García, A., Cruzado- Vargas, A. L., Gómez-Pineda, E., Zamora-Sánchez, C., Pineda- García, F., O’Neill, G., Gómez-Romero, M., Lindig-Cisneros, R., Johnsen, K. H., Lobit, P., Lopez-Toledo, L., Herrerías-Diego, Y. & Sáenz-Romero, C. (2019). Ecological restoration of Abies religiosa forests using nurse plants and assisted migration in the Monarch Butterfly Biosphere Reserve, Mexico. Frontiers in Ecology and Evolution, 7(Article 421), 1—16. https://doi. org/10.3389/fevo.2019.00421
Castellanos-Acuña, D., Lindig-Cisneros, R. A., Silva-Farias, M. Á., & Sáenz-Romero, C. (2014). Zonificación altitudinal provisional de Abies religiosa en un área cercana a la Reserva de la Biósfera de la Mariposa Monarca, Michoacán. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 20(2), 215—225. https://doi. org/10.5154/r.rchscfa.2013.11.041
Castellanos-Acuña, D., Lindig-Cisneros, R., & Sáenz-Romero, C. (2015). Altitudinal assisted migration of Mexican pines as an adaptation to climate change. Ecosphere, 6(1), 1—16. https://doi.org/10.1890/ES14-00375.1
Castellanos-Acuna, D., Vance-Borland, K. W., St. Clair, J. B., Hamann, A., López-Upton, J., Gómez-Pineda, E., Ortega-Rodríguez, J. M., & Sáenz-Romero, C. (2018). Climate-based seed zones for Mexico: guiding reforestation under observed and projected climate change. New Forests, 49, 297—309. https://doi.org/10.1007/s11056-017-9620-6
Castro, J., Morales‐Rueda, F., Navarro, F. B., Löf, M., Vacchiano, G., & Alcaraz‐Segura, D. (2021). Precision restoration: A necessary approach to foster forest recovery in the 21st century. Restoration Ecology, 29(7), e13421. https://doi.org/10.1111/rec.13421
Comisión Nacional Forestal (CONAFOR). (2018). Libro Blanco. Programa Nacional Forestal (PRONAFOR). http://www.conafor.gob.mx:8080/documentos/docs/1/7625Programa%20Nacional%20Forestal%202014-2018(PRONAFOR).pdf
Crow, T. M., Albeke, S. E., Buerkle, C. A., Hufford, K. M. (2018). Provisional methods to guide species‐specific seed transfer in ecological restoration. Ecosphere, 9(1), e02059. https://doi.org/10.1002/ecs2.2059
de Azcárate Cornide, J. G., Ramírez, M. I., & Pinto, M. (2003). Las comunidades vegetales de la Sierra de Angangueo (Estados de Michoacán y México, México): clasificación, composición y distribución. Lazaroa, 24, 87—111. https://dialnet.unirioja. es/servlet/articulo?codigo=1028620
Farjon, A., & Styles, B. T. (1997). Pinus (Pinaceae). Flora Neotropica Monograph, 75. New York Botanical Garden, New York.
Flores-Nieves, P., López-López, M. Á., Ángeles-Pérez, G., de la Isla- Serrano, M. D. L., & Calva-Vásquez, G. (2011). Biomass estimation and distribution models of Abies religiosa (Kunth) Schltdl. et Cham: In decline. Revista Mexicana de Ciencias Forestales, 2(8), 9—20. https://www.scielo.org.mx/pdf/remcf/v2n8/v2n8a2.pdf
Gallardo-Salazar, J. L., Sáenz-Romero, C., Lindig-Cisneros, R. A., Blanco-García, A., & Osuna-Vallejo, V. (2023). Evaluation of forestry component survival in plots of the program “Sembrando Vida” (Sowing Life) using drones. Forests, 14(11), 2117. https://doi.org/10.3390/f14112117
Giencke, L. M., Carol Denhof, R., Katherine Kirkman, L., Stribling Stuber, O., & Brantley, S. T. (2018). Seed sourcing for longleaf pine ground cover restoration: using plant performance to assess seed transfer zones and home‐site advantage. Restoration Ecology, 26(6), 1127—1136. https://doi.org/10.1111/rec.12673
Gómez‐Pineda, E., Sáenz‐Romero, C., Ortega‐Rodríguez, J. M., Blanco‐ García, A., Madrigal‐Sánchez, X., Lindig‐Cisneros, R., López-Toledo L., Pedraza-Santos M. E., & Rehfeldt, G. E. (2020). Suitable climatic habitat changes for Mexican conifers along altitudinal gradients under climatic change scenarios. Ecological Applications, 30(2), e02041. https://doi.org/10.1002/eap.2041
Guitérrez, E., & Trejo, I. (2014). Efecto del cambio climático en la distribución potencial de cinco especies arbóreas de bosque templado en México. Revista Mexicana de Biodiversidad, 85(1), 179—188.
Gray L. K., & Hamann, A. (2013). Tracking suitable habitat for tree populations under climate change in western North America. Climatic Change, 117(1-2), 289—303. https://doi.org/10.1007/s10584-012-0548-8
Hall, M., Guerrero, G., & Masera, O. (2015). Apéndice 2: Modelación de líneas base de deforestación utilizando GEOMOD para las regiones de Calakmul y Meseta Purépecha en México. https://www.researchgate.net/profile/Omar-Masera/publication/268377461_Apendice_2_Modelacion_de_lineas_base_de_deforestacion_utilizando_GEOMOD_para_las_regiones_de_Calakmul_y_Meseta_Purepecha_en_Mexico/links/550c5a050cf212874160db4a/Apendice-2-Modelacion-de-lineas-base-de-deforestacion-utilizando-GEOMOD-para-las-regiones-de-Calakmul-y-Meseta-Purepecha-en-Mexico.pdf
Hansen, J., Sato, M., & Ruedy, R. (2012). Perception of climate change. Proceedings of the National Academy of Sciences, 109(37), E2415-E2423. https://doi.org/10.1073/pnas.1205276109
Hamann, A., Gylander, T., & Chen, P. Y. (2011). Developing seed zones and transfer guidelines with multivariate regression trees. Tree Genetics & Genomes, 7, 399—408. https://doi.org/10.1007/s11295-010-0341-7
Hammond, W. M., Williams, A. P., Abatzoglou, J. T., Adams, H. D., Klein, T., López, R., Sáenz-Romero, C., Hartmann, H., Breshears D. D., & Allen, C. D. (2022). Global field observations of tree die-off reveal hotter-drought fingerprint for Earth’s forests. Nature Communications, 13(1), 1761. https://doi.org/10.1038/S41467‐022‐29289‐2
Havens, K., Vitt, P., Still, S., Kramer, A. T., Fant, J. B., & Schatz, K. (2015). Seed sourcing for restoration in an era of climate change. Natural Areas Journal, 35(1), 122—133. https://doi. org/10.3375/043.035.0116
Ipinza, C. R., & Gutiérrez, C. B. (2014). Consideraciones genéticas para la restauración ecológica. Ciencia & Investigación Forestal, 20(2), 51—72. https://doi.org/10.52904/0718-4646.2014.421
Latorre-Cárdenas, M. C., González-Rodríguez, A., Godínez-Gómez, O., Arima, E. Y., Young, K. R., Denvir, A., García-Oliva, F., & Ghilardi, A. (2023). Estimating fragmentation and connectivity patterns of the temperate forest in an avocado- dominated landscape to propose conservation strategies. Land, 12(3), 631. https://doi.org/10.3390/land12030631
Leites, L. P., Rehfeldt, G. E., Robinson, A. P., Crookston, N. L., & Jaquish, B. (2012a). Possibilities and limitations of using historic provenance tests to infer forest species growth responses to climate change. Natural Resource Modeling, 25(3), 409—433. https://doi.org/10.1111/j.1939-7445.2012.00129.x
Leites, L. P., Robinson, A. P., Rehfeldt, G. E., Marshall, J. D., &Crookston, N. L. (2012b). Height‐growth response to climatic changes differs among populations of Douglas‐fir: a novel analysis of historic data. Ecological Applications, 22(1), 154—165. https://doi.org/10.1890/11-0150.1
López-Toledo, L., Heredia-Hernández, M., Castellanos-Acuña, D., Blanco-Garcıa, A., & Sáenz-Romero, C. (2017). Reproductive investment of Pinus pseudostrobus along an altitudinal gradient in Western Mexico: implications of climate change. New Forests, 48(6), 867—881. https://doi.org/10.1007/s11056-017-9602-8
Madrigal-Sánchez, X. (1967). Contribución al conocimiento de la ecología de los bosques de oyamel (Abies religiosa (H. B. K.) Schl. et Cham.) en el Valle de México. Instituto Nacional de Investigaciones Forestales. http://agris.fao.org/agris-search/search. do?recordID=US201300590737
Mátyás, C., (2010). Forecasts needed for retreating forests. Nature, 464(7293), 1271. https://www.nature.com/articles/4641271a
Mendoza-Maya, E., Gómez-Pineda, E., Sáenz-Romero, C., Hernández- Díaz, J. C., López-Sánchez, C. A., Vargas-Hernández, J. J., Prieto- Ruiz, J. A., & Wehenkel, C. (2022). Assisted migration and the rare endemic plant species: the case of two endangered Mexican spruces. PeerJ, 10, e13812. https://doi.org/10.7717/peerj.13812
Molina Sánchez, A., Delgado, P., González-Rodríguez, A., González, C., Gómez-Tagle Rojas, A. F., & Lopez-Toledo, L. (2019). Spatio- temporal approach for identification of critical conservation areas: a case study with two pine species from a threatened temperate forest in Mexico. Biodiversity and Conservation, 28(7), 1863—1883. https://doi.org/10.1007/s10531-019-01767-y
Ortiz-Bibian, M. A., Blanco-García, A., Lindig-Cisneros, R. A., Gómez-Romero, M., Castellanos-Acuña, D., Herrerías- Diego, Y., Sánchez-Vargas, N. M., & Sáenz-Romero, C. (2017). Genetic variation in Abies religiosa for quantitative traits and delineation of elevational and climatic zoning for maintaining monarch butterfly overwintering sites in Mexico, considering climatic change. Silvae Genetica, 66(1), 14—23. https://doi.org/10.1515/sg-2017-0003
O’Neill, G. A., Stoehr, M., & Jaquish, B. (2014). Quantifying safe seed transfer distance and impacts of tree breeding on adaptation. Forest Ecology and Management, 328, 122—130. https://doi.org/10.1016/j.foreco.2014.05.039
Pike, C., Potter, K. M., Berrang, P., Crane, B., Baggs, J., Leites, L., & Luther, T. (2020). New seed-collection zones for the eastern United States: the eastern seed zone forum. Journal of Forestry, 118(4), 444—451. https://doi.org/10.1093/jofore/fvaa013
Prieto Ruíz, J. Á., Duarte Santos, A., Goche Télles, J. R., González Orozco, M. M., & Pulgarín Gámiz, M. Á. (2018). Supervivencia y crecimiento de dos especies forestales, con base en la morfología inicial al plantarse. Revista Mexicana de Ciencias Forestales, 9(47), 151—168. https://doi.org/10.29298/rmcf. v9i47.182
Prieto Ruíz, J. A., & Goche Télles, R. (2016). Las reforestaciones en México: problemática y alternativas de solución (1.a ed.). Universidad Juárez Autónoma de Durango. http://forestales.ujed.mx/forestales/es/contenido/eventos_documentos/LIBRO_REFORESTACIONES_EN_MEXICO.pdf
QGIS (2023). QGIS Geographic Information System. Un sistema de información geográfica libre y de código abierto versión 3.32.1. http://www.qgis. org
Rehfeldt, G. E., & Jaquish, B. C. (2010). Ecological impacts and management strategies for western larch in the face of climate-change. Mitigation and Adaptation Strategies for Global Change, 15(3), 283—306. https://doi.org/10.1007/s11027-010-9217-2
Rehfeldt, G. E., Crookston, N. L., Sáenz-Romero, C., & Campbell, E. M. (2012). North American vegetation model for land‐ use planning in a changing climate: A solution to large classification problems. Ecological Applications, 22(1), 119—141. https://doi.org/10.1890/11-0495.1
Rehfeldt, G. E., Leites, L. P., St Clair, J. B., Jaquish, B. C., Sáenz-Romero, C., López-Upton, J., & Joyce, D. G. (2014). Comparative genetic responses to climate in the varieties of Pinus ponderosa and Pseudotsuga menziesii: Clines in growth potential. Forest Ecology and Management, 324, 138—146. https://doi.org/10.1016/j. foreco.2014.02.041
Sáenz-Romero, C., Rehfeldt, G. E., Crookston, N. L., Duval, P., St- Amant, R., Beaulieu, J., & Richardson, B. A. (2010). Spline models of contemporary, 2030, 2060 and 2090 climates for Mexico and their use in understanding climate-change impacts on the vegetation. Climatic Change, 102, 595—623. https://doi.org/10.1007/s10584-009-9753-5
Sáenz-Romero, C., Rehfeldt, G. E., Duval, P., & Lindig-Cisneros, R. A. (2012a). Abies religiosa habitat prediction in climatic change scenarios and implications for monarch butterfly conservation in Mexico. Forest Ecology and Management, 275, 98—106. https://doi.org/10.1016/j.foreco.2012.03.004
Sáenz-Romero, C., Rehfeldt, G. E., Soto-Correa, J. C., Aguilar-Aguilar, S., Zamarripa-Morales, V., & López-Upton, J. (2012b). Altitudinal genetic variation among Pinus pseudostrobus populations from Michoacán, México: two location shadehouse test results. Revista Fitotecnia Mexicana, 35(2), 111—121. https://www.scielo.org.mx/pdf/rfm/v35n2/v35n2a3.pdf
Sáenz-Romero, C. S. (2015). Efectos potenciales del cambio climático en los recursos forestales. La sabanización de las regiones continentales de México. Sociedades Rurales, Producción y Medio Ambiente, 15(30), 91—110. https://sociedadesruralesojs.xoc.uam.mx/index.php/srpma/article/view/291/289
Sáenz-Romero, C., Lindig-Cisneros, R. A., Joyce, D. G., Beaulieu, J., Bradley, J. St. C., & Jaquish, B. C. (2016). Assisted migration of forest populations for adapting trees to climate change. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 22(3), 303—323. https://doi.org/10.5154/r.rchscfa.2014.10.052
Sáenz-Romero, C., Mendoza-Maya, E., Gómez-Pineda, E., Blanco- García, A., Endara-Agramont, A. R., Lindig-Cisneros, R., López-Upton, J., Trejo-Ramírez, O., Wehenkel, C., Cibrián- Tovar, D., Flores-López, C., Plascencia-González, A., & Vargas- Hernández, J. J. (2020). Recent evidence of Mexican temperate forest decline and the need for ex situ conservation, assisted migration, and translocation of species ensembles as adaptive management to face projected climatic change impacts in a megadiverse country. Canadian Journal of Forest Research, 50(9), 843—854. https://doi.org/10.1139/cjfr-2019-0329
Sáenz-Romero, C., Cambrón-Sandoval, V. H., Hammond, W., Méndez- González, J., Luna-Soria, H., Macías-Sámano, J. E., Gómez- Romero, M., Trejo-Ramírez, O., Allen, C. D., Gómez-Pineda, E., & Del-Val, E. (2023). Abundance of Dendroctonus frontalis and D. mexicanus (Coleoptera: Scolytinae) along altitudinal transects in Mexico: Implications of climatic change for forest conservation. PloS ONE, 18(7), e0288067. https://doi.org/10.1371/journal.pone.0288067
Sáenz-Romero, C. (2024). Arriving at a tipping point for worldwide forest decline due to accelerating climatic change. The Forestry Chronicle, 100(1), 1—3 https://doi.org/10.5558/tfc2024-003
Seda, A. & Ömer, Ö. (2019). Present and future potential distribution of the Pinus nigra Arnold. and Pinus sylvestris using Maxent model. International Journal of Ecosystems and Ecology Sciences, 9(4). https://doi.org/10.31407/ijees9425
Secretaría de Economía. (2016). Declaratoria de vigencia de la Norma Mexicana NMX‐AA‐169‐SCFI‐2016. Establecimiento de unidades productoras y manejo de germoplasma forestal especificaciones
técnicas. México: Diario Oficial de la Federación. https://www.dof.gob.mx/nota_detalle.php?codigo=5455455&fecha=03/10/2016#gsc.tab=0
St. Clair, J. B., Kilkenny, F. F., Johnson, R. C., Shaw, N. L., & Weaver, G. (2013). Genetic variation in adaptive traits and seed transfer zones for Pseudoroegneria spicata (bluebunch wheatgrass) in the northwestern United States. Evolutionary Applications, 6(6), 933—948. https://doi.org/10.1111/eva.12077
Soni, D. K., & Ansari, F. (2017). Climate change and biodiversity; impacts, vulnerability and mitigation in Indian perspective: A review. Journal of Applied and Natural Science, 9(1), 632—638. https://journals.ansfoundation.org/index.php/jans/article/view/1243/1194
Tomita, M., Kobayashi, S., Abe, S., Hanai, T., Kawazu, K., & Tsuda, S. (2017). Phylogeography of ten native herbaceous species in the temperate region of Japan: implication for the establishment of seed transfer zones for revegetation materials. Landscape and Ecological Engineering, 13, 33—44. https://doi.org/10.1007/s11355-016-0297-3
Tchebakova, N. M., Rehteldt, G. E., & Parfenova E. I. (2005). Impacts of climate change on the distribution of Larix spp. and Pinus sylvestris and their climatypes in Siberia. Mitigation and Adaptation Strategies for Global Change, 11, 861—882. https://doi.org/10.1007/s11027-005-9019-0
Urban, M. C. (2015). Accelerating extinction risk from climate change. Science, 348(6234), 571—573. https://doi.org/10.1126/science.aaa4984
Walsh, J., Wuebbles, D., Hayhoe, K., Kunkel, K., Somerville, R., Stephens, G., & Thorne, P. (2013). Our changing climate. NCADAC Draft Climate Assessment Report, 25—103. https://doi.org/10.7930/J0KW5CXT
Wang, T., Hamann, A., Spittlehouse, D., & Carroll, C. (2016). Locally downscaled and spatially customizable climate data for historical and future periods for North America. PLoS ONE, 11(6), e0156720. https://doi.org/10.1371/journal. pone.0156720
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright (c) 2024 Revista Chapingo Serie Ciencias Forestales y del Ambiente