Abstract
Introduction: The forestry sector faces energy challenges that involve the precise determination of the final energy consumption to achieve improvements.
Objective: To estimate the final energy consumed while processing timber forest resources.
Materials and methods: The Total Final Consumption (TFC) was determined in six companies (statistical units) engaged in primary timber processing in Pueblo Nuevo, Durango. Activity data and significant energy uses (SEUs) for two years were obtained through an energy audit. The data were disaggregated by statistical unit, activity, form and application of energy, and expressed in tons of oil equivalent (toe).
Results and discussion: The energy consumption per statistical unit was estimated at 71.19 toe·yr-1, releasing 260.14 tCO2e·yr-1. SEU was identified in vehicles with diesel engines (75 %). The use of gasoline and electrical energy in machines accounted for 14.2 % and 10.7 %, respectively. Electric motors used up to 98 % of the electrical energy. Logging represented 69 % of the Total Final Consumption (TFC), more than twice compared to sawing. Energy consumption was significantly different between statistical units (Tukey, P < 0.05) for sawing, but not for logging.
Conclusions: Energy consumption for logging was similar among the units studied but was not similar for sawing. An effective energy management program and the integration of wood energy could optimize the consumption pattern.
References
American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE). (2011). Procedures for commercial building energy audits. Author.
Berg, S., & Lindholm, L. (2005). Energy use and environmental impacts of forests operations in Sweden. Journal of Cleaner Production, 13(1), 33—42. https://doi.org/10.1016/j.jclepro.2003.09.015
Cai, W., Wang, L., Li, L., Xie, J., Jia, S., Zhang, X., Jiang, Z., & Lai,H. (2022). A review on methods of energy performance improvement towards sustainable manufacturing from perspectives of energy monitoring, evaluation, optimization and benchmarking. Renewable and Sustainable Energy Reviews, 159, 112227. https://doi.org/10.1016/j.rser.2022.112227
Capehart, L., Turner, C., & Kennedy, J. (2012). Guide to energy management. The Fairmont Press.
Comisión Reguladora de Energía (CRE). (June 2, 2022). Precios de gasolinas y diésel reportados por los permisionarios. https://www. cre.gob.mx/Consulta Precios/Gasolinasy Diesel/ GasolinasyDiesel.html
Comisión Reguladora de Energía (CRE). (2019). Factor de emisión del sistema eléctrico nacional 2018. www.gob.mx/cms/uploads/attachment/file/442910/Aviso_Factor_de_Emisiones_2018.pdf
Comisión Reguladora de Energía (CRE). (2018). Factor de emisión del sistema eléctrico nacional 2017. www.gob.mx/cms/uploads/attachment/file/304573/Factor_de_Emisi_n_del_Sector_El_ctrico_Nacional_1.pdf
Di Rienzo, A., Casanoves, F., Balzarini, G., Gonzalez, L., Tablada, M., & Robledo, W. (2019). InfoStat versión 2019. Universidad Nacional de Córdoba. http://www.infostat.com.ar
Donahue, T., Morgan, T., & Dillon, T. (2021). Oregon sawmill energy consumption and associated emissions, 2017. https://www.oregon.gov/odf/forestbenefits/Documents/or-sawmill-energy-consumption-associated-emissions-2017.pdf
Dudziec, P., Stachowicz, P., & Stolarski, J. (2023). Diversity of properties of sawmill residues used as feedstock for energy generation. Renewable Energy, 202, 822—833. https://doi. org/1016/j.renene.2022.12.002
Food and Agriculture Organization (FAO). (1991). Conservación de energía en las industrias mecánicas forestales. Author. https://www.fao.org/3/t0269s/T0269S00.htm
Hamit-Haggar, M. (2012). Greenhouse gas emissions, energy consumption and economic growth: A panel cointegration analysis from Canadian industrial sector perspective. Energy Economics, 34(1), 358—364. https://doi.org/10.1016/j.eneco.2011.06.005
International Energy Agency (IEA). (2015). Energy efficiency indicators: essentials for policy making. https://www.iea.org/reports/energy-efficiency-indicators-essentials-for-policy- making
International Energy Agency (IEA). (2016). Energy efficiency indicators: Fundamental on statistics. https://www.iea.org/reports/energy-efficiency-indicators-fundamentals-on- statistics
International Organization for Standardization (ISO). (2018). Energy management system – requirements with guidance for use. ISO 50001. https://www.iso.org/standard/69426.html
Intergovernmental Panel on Climate Change (IPCC). (2006). 2006 IPCC guidelines for national greenhouse gas inventories. In H.S. Eggleston, L. Buendia, K. Miwa, T. Ngara, & K. Tanabe (Eds.). IGES. https://www.ipcc-nggip.iges.or.jp/public/2006gl/
Intergovernmental Panel on Climate Change (IPCC). (2015). Climate change 2014: Synthesis report. Contribution of working groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In Core Writing Team, R. K. Pachauri, & L. A. Meyer (Eds.). Author. https://www.ipcc.ch/report/ar5/syr/ Lee, H., & Birol, F. (2020). Energy is at the heart of the solution to the climate change. https://www.ipcc.ch/2020/07/31/energy-climatechallenge/
Lijewski, P., Merkisz, J., Fuć, P., Ziółkowski, A., Rymaniak, Ł., & Kusiak, W. (2017). Fuel consumption and exhaust emissions in the process of mechanized timber extraction and transport. European Journal of Forest Research, 136(1), 153—160. https://doi.org/10.1007/s10342-016-1015-2
Loeffler, D., Anderson, N., Morgan, T. D., & Sorenson, C. B. (2016). On-site energy consumption and selected emissions at softwood sawmills in the Southwestern United States. Forest Products Society, 66(5/6), 326—337. https://doi.org/10.13073/FPJ-D-15-00060
McKinsey & Company. (2002). Global energy perspective 2022 report. https://www.mckinsey.com/~/media/McKinsey/Industries/Oil%20and%20Gas/Our%20Insights/Global%20Energy%20Perspective%202022/Global-Energy-Perspective-2022-Executive-Summary.pdf
Meil, J., Bushi, L., Garrahan, P., Aston, R., Gingras, A., & Elustondo, D. (2009). Status of energy use in the Canadian wood products sector. Canadian Industry Program for Energy Conservation (CIPEC). https://library.fpinnovations.ca/en/viewer?file=%2fmedia%2fWP%2f2780.pdf#phrase=false&pagemode=bookmarks
Mendenhall, W., Beaver, R., & Beaver, B. (2010). Introducción a la probabilidad y estadística. Cenage Learning.
Meza, P., Trujillo, M., Burciaga, A., De la Cruz, R., & Nájera, J. (2021). Carbon footprint estimate in the primary wood processing industry in El Salto, Durango. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 27(1), 127—142. https://doi.org/10.5154/r.rchscfa.2019.07.060
Morgan, T, Donahue, T., Rosenberg, M., & Christensen, G. (2019). Energy use and emissions by the California Sawmill Sector, 2016. https://bof.fire.ca.gov/media/9689/ca-sawmill-energy- report_final_20_9-16-19_v1_ada.pdf
Organización de las Naciones Unidas (ONU). (2009). Clasificación industrial internacional uniforme de todas las actividades económicas (CIIU) revisión 4. https://unstats.un.org/unsd/publication/seriesm/seriesm_4rev4s.pdf
Navarrete, F., & Labelle, F. (2023). Gestión energética y desarrollo organizacional sostenible en las pequeñas medianas empresas de Jalisco. Trascender, Contabilidad y Gestión, 8(22), 2—18. https://doi.org/10.36791/tcg.v8i22.194
Olsson, M. (2020). Energy management in the Norwegian sawmill industry. https://www.eceee.org/library/conference_ proceedings/eceee_Industrial_Summer_Study/2020/3-energy-management/energy-management-in-the-norwegian- sawmill-industry/
Pro Floresta S. C. (2008). Estudio regional forestal UMAFOR 1008 Pueblo Nuevo Durango. http://www.conafor.gob.mx:8080/documentos/docs/9/1134ERF_UMAFOR1008.pdf
Ratnasingam, J., Ramasamy, G., Ioras, F., & Parasuraman, N. (2017). Assessment of the carbon footprint of rubberwood sawmilling in peninsular Malaysia: Challenging the green label of the material. BioResources, 12(2), 3490—3503. https://doi.org/10.15376/biores.12.2.3490-3503
Reyes, A., Quiñones, P., Meza, P., Nájera, J., & Díaz, B. (2022). Aplicación de la función de la producción como indicador de desempeño energético en una empresa forestal. Academia Journals, 14(4), 414—419. https://www.academiajournals.com/puboaxaca2022
Saidur, R., Rahim, N. A., Masjuki, H. H., Mekhilef, S., Ping, H. W., & Jamaluddin, M. F. (2009). End-use energy analysis in the Malaysian industrial sector. Energy, 34(2), 153—158. https:// doi.org/10.1016/j.energy.2008.11.004
Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT). (2021). Anuario estadístico de la producción forestal 2018. https://dsiappsdev.semarnat.gob.mx/datos/portal/publicaciones/2021/2018.pdf
Secretaría de Energía (SENER). (2021). Balance nacional de energía 2020. https://www.gob.mx/cms/uploads/attachment/file/707654/BALANCE_NACIONAL_ENERGIA_0403.pdf
Thollander, P., Danestig, M., & Rohdin, P. (2007). Energy policies for increased industrial energy efficiency: Evaluation of a local energy programme for manufacturing SMEs. Energy Policy, 35(11), 5774—5783. https://doi.org/10.1016/J. ENPOL.2007.06.013
Wan, M., Lähtinen, K., Toppinen, A., & Toivio, M. (2012). Opportunities and challenges in the emerging bioenergy business: The case of the Finnish sawmill industry. International Journal of Forest Engineering, 23(2), 89—101. https://doi.org/10.1080/14942119.2012.10739965
World Business Council Sustainable Development & World Resources Institute (2005). A corporate accounting and reporting standard. https://ghgprotocol.org/corporate-standard
Xing, X., Cong, Y., Wang, Y., & Wang, X. (2023). The impact of COVID-19 and war in Ukraine on energy prices of oil and natural gas. Sustainability, 15(19), 14208. https://doi.org/10.3390/su151914208
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright (c) 2024 Revista Chapingo Serie Ciencias Forestales y del Ambiente