Revista Chapingo Serie Ciencias Forestales y del Ambiente
Modelado espacial y temporal de contaminantes atmosféricos en la Zona Metropolitana de la Ciudad de México
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF
Graphical abstract
Resumen gráfico

Palabras clave

monóxido de carbono
óxidos de nitrógeno
ozono
partículas sólidas
Machine Learning

Cómo citar

Cruz-Huerta, C., Martínez-Trinidad, T. ., Correa-Díaz, A. ., Gómez-Guerrero, A., Vargas-Hernández, J. J., Villanueva-Díaz, J., & Beramendi-Orosco, L. E. (2023). Modelado espacial y temporal de contaminantes atmosféricos en la Zona Metropolitana de la Ciudad de México. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 30(1), 1–18. https://doi.org/10.5154/r.rchscfa.2023.02.010

Plaudit

Ideas destacas

  • El NO X , O 3 , CO, PM 10 y PM 2.5 se analizaron en la Zona Metropolitana de la Ciudad de México (ZMCM).
  • La dinámica espacio temporal varió entre contaminantes en la ZMCM.
  • Las concentraciones de los contaminantes disminuyeron en los periodos analizados.
  • El NO X tuvo mayor disminución (-1.28 ppb∙año -1 ) y CO fue el de menor cambio (-0.12 ppm∙año -1 ).
  • Support Vector Machine presentó mejor ajuste para la interpolación de los contaminantes.

Resumen Gráfico

Resumen

Introducción: Las grandes ciudades presentan problemas de contaminación atmosférica por la emisión de gases contaminantes y material particulado (PM).
Objetivos: Conocer la variación intra e interanual de los contaminantes (NOX, CO, O3, PM10 y PM2.5) en la Zona Metropolitana de la Ciudad de México y modelar su distribución espacial.
Materiales y métodos: Se analizaron los datos de 44 estaciones de la Red Automática de Monitoreo Atmosférico (RAMA) para extraer información de los contaminantes NOX, O3 y CO en el periodo 1986-2021, y PM2.5 y PM10 en los periodos 2000-2021 y 2003-2021, respectivamente. Se calcularon promedios mensuales por estación y se evaluó la tendencia temporal de cada contaminante mediante el operador ‘Theil-Sen’. También se modeló la distribución espacial de los contaminantes y se comparó el desempeño estadístico de cuatro métodos de interpolación: Redes neuronales, Support Vector Machine, Random Forest y Kriging Universal.
Resultados y discusión: Las concentraciones de NOX y CO fueron altas en noviembre-enero, mientras que las de O3 en abril-mayo. Las concentraciones más bajas de PM10 y PM2.5 ocurrieron en julio-octubre y las máximas en mayo. Todos los contaminantes disminuyeron su concentración durante el periodo analizado, con cambios más notorios en NOX (-1.28 ppb·año-1) , mientras que CO fue el de menor cambio (-0.12 ppm·año-1). Los valores máximos de NOX, O3 y CO se presentaron en 1993 y de PM en 2003. El mejor modelo fue Support Vector Machine, independientemente del contaminante analizado.
Conclusión: La dinámica espaciotemporal varió entre los contaminantes atmosféricos. El análisis con métodos de interpolación espacial es factible y favorece estrategias de solución a los problemas de contaminación.

https://doi.org/10.5154/r.rchscfa.2023.02.010
PDF
Graphical abstract
Resumen gráfico

Citas

Akritas, M. G., Murphy, S. A., & Lavalley, M. P. (1995). The theil-sen estimator with doubly censored data and applications to astronomy. Journal of the American Statistical Association, 90(429), 170‒177. https://doi.org/10.1080/01621459.1995.10476499

Ale, T. M. L., Moreno, S. K., & Luque, Z. B. (2020). Perspectiva del COVID-19 sobre la contaminación del aire. Revista de la Sociedad Científica del Paraguay, 25(2), 155‒182. https://doi.org/10.32480/rscp.2020.25.2.155

Aliyar, Z. B., Shafiei, A. B., Seyedi, N., Rezapour, S., & Moghanjugi, S. M. (2020). Effect of traffic-induced air pollution on seed germination of Arizona Cypress (Cupressus arizonica Green) and Black Pine (Pinus nigra Arnold). Urban Forestry & Urban Greening, 55, 126841. https://doi.org/10.1016/j.ufug.2020.126841

Barrera Huertas, H. A., Torres Jardón, R., Ruíz Suárez, L. G., Santos García Yee, J., Torres Jaramillo, A., Martínez Bolívar, A. P., & García Reynoso, J. A. (2019). Análisis del transporte de ozono en la cuenca atmosférica de Puebla-Tlaxcala en el centro de México. Revista Internacional de Contaminación Ambiental, 35(4), 869‒888. https://doi.org/10.20937/rica.2019.35.04.08

Beguin, J., Fuglstad, G.-A., Mansuy, N., & Paré, D. (2017). Predicting soil properties in the Canadian boreal forest with limited data: Comparison of spatial and non-spatial statistical approaches. Geoderma, 306, 195‒205. 10.1016/j.geoderma.2017.06.016

Calderón, G. D., Hernández, I. J. L., Castilla, S. L., Hernández, G. E., Barragán, M. G., Rodríguez, P. R. A., & Villegas, O. G. (2000). El ozono como molécula reactiva. Concepto actual. Perinatología y Reproducción Humana, 14(2), 115‒123. https://www.medigraphic.com/pdfs/inper/ip-2000/ip002f.pdf

Camarillo, R. P., López, A. S., Rosales, L. J. C., & Pérez, V. I. (2014). Análisis de datos de calidad del aire de la Zona Metropolitana del Valle de México mediante técnicas de agrupamiento. Research in Computing Science, 72, 137‒150. https://doi.org/10.13053/rcs-72-1-11

Castro, M., García, D., & Jiménez, A. (2017). Comparación de técnicas de interpolación espacial de propiedades del suelo en el piedemonte llanero colombiano. Tecnura, 21(53), 78‒95. https://doi.org/10.14483/22487638.11658

Cervantes, M. G. T., Bracho, L. R., & Bremauntz, A. F. (2005). Las partículas suspendidas en tres grandes ciudades mexicanas. Gaceta Ecológica, (74), 15‒28. https://www.redalyc.org/articulo.oa?id=53907402

Chen, L., Ren, C., Li, L., Wang, Y., Zhang, B., Wang, Z., & Li, L. (2019). A comparative assessment of geostatistical, machine learning, and hybrid approaches for mapping topsoil organic carbon content. ISPRS International Journal of Geo-Information, 8, 174. https://doi.org/10.3390/ijgi8040174

Chow, J., Watson, J., Edgerton, S., & Vega, E. (2002). Chemical composition of PM2.5 and PM10 in Mexico City during winter 1997. The Science of the Total Environment, 287(3), 177‒201. https://doi.org/10.1016/S0048-9697(01)00982-2

Correa, I. J. de J., Romero, P. J. M., Pérez, R. P., & Vázquez, A. A. (2023). Application of geostatistical models for aridity scenarios in northern Mexico. Atmósfera, 37, 233–244. https://doi.org/10.20937/ATM.53103

Cunha, V., Magoni, D., Inácio, P., & Freire, M. (2022). Impact of self C parameter on SVM-based classification of encrypted multimedia peer-to-peer traffic. In L. Barolli, F. Hussain, & T. Enokido (Eds.), Advanced information networking and applications (pp. 180‒193). Springer. https://doi.org/10.1007/978-3-030-99584-3_16

Espejel, M. J. (2019). La Zona Metropolitana del Valle de México: arreglos formales y fragmentación. Economía, Sociedad y Territorio, 19(60), 241‒271. https://www.redalyc.org/articulo.oa?id=11162787009

Espinosa-Zuñiga, J. J. (2020). Aplicación de algoritmos Random Forest y XGBoost en una base de solicitudes de tarjetas de crédito. Ingeniería, Investigación y Tecnología, 21(3). https://doi.org/10.22201/fi.25940732e.2020.21.3.022

Espinoza, E. P., & Molina, C. E. (2014). Contaminación del aire exterior Cuenca-Ecuador, 2009-2013. Posibles efectos en la salud. Revista de la Facultad de Ciencias Médicas de la Universidad de Cuenca, 32(2), 6‒17. https://publicaciones.ucuenca.edu.ec/ojs/index.php/medicina/article/view/883/781

Estarlich, M., Iñiguez, C., Esplugues, A., Mantilla, E., Zurriaga, Ò., Nolasco, A., & Ballester, F. (2013). Variación espacial de la exposición a contaminación atmosférica en la ciudad de Valencia y su relación con un índice de privación. Gaceta Sanitaria, 27(2), 143‒148. https://doi.org/10.1016/j.gaceta.2012.05.010

García, R. J. A. (2009). Influencia de la meteorología en la calidad de aire en la Zona Metropolitana del Valle de México. TIP Revista Especializada en Ciencias Químico-Biológicas, 12(2), 83‒86. https://doi.org/10.22201/fesz.23958723e.2009.2.27

García, E., & Lozano, F. (2007). Boosting support vector machines. https://elkingarcia.github.io/Papers/MLDM07.pdf

Guzmán-Morales, J., Morton-Bermea, O., Hernández-Álvarez, E., Rodríguez-Salazar, M. T., García-Arreola, M., & Tapia-Cruz, V. (2011). Assessment of atmospheric metal pollution in the urban area of Mexico City, using Ficus benjamina as biomonitor. Bulletin of Environmental Contamination and Toxicology, 86, 495‒500. https://doi.org/10.1007/s00128-011-0252-9

Instituto Nacional de Estadística y Geografía (INEGI). (2020). Censo de Población y Vivienda. https://www.inegi.org.mx/programas/ccpv/2020/

Instituto Nacional de Estadística y Geografía (INEGI). (2022). Vehículos de motor registrados en circulación. https://www.inegi.org.mx/programas/vehiculosmotor/

Jenkin, M., & Clemitshaw, K. (2000). Ozone and other secondary photochemical pollutants: Chemical processes governing their formation in the planetary boundary layer. Atmospheric Environment, 34, 2499‒2527. doi: 10.1016/S1352-2310(99)00478-1

Liu, Z., & Xu, H. (2014). Kernel parameter selection for support vector machine classification. Journal of Algorithms & Computational Technology, 8(2), 163‒177. https://doi.org/10.1260/1748-3018.8.2.163

López, F. A., Heres, D., & Marquez, P. F. (2021). Air pollution exposure and COVID-19: A look at mortality in Mexico City using individual-level data. Science of the Total Environment, 756, 143929. https://doi.org/10.1016/j.scitotenv.2020.143929

Madrigal, U. D., Hernández, R. J. C., & Morales, M. C. (2004). Comportamiento del monóxido de carbono y el clima en la ciudad de Toluca, de 1995 a 2001. Ciencia Ergo-Sum, Revista Científica Multidisciplinaria de Prospectiva, 11(3), 263‒274. https://www.redalyc.org/articulo.oa?id=10411306

Mercado, A., Domínguez, L., & Fernández, O. (1995). Contaminación industrial en la zona metropolitana de la Ciudad de México. Comercio Exterior, 45(10), 766‒774. http://revistas.bancomext.gob.mx/rce/magazines/325/6/RCE6.pdf

Miller, B. G. (2011). 4 - The effect of coal usage on human health and the environment. In B. G. Miller (Ed.), Clean coal engineering technology (pp. 85‒132). Butterworth-Heinemann. https://doi.org/10.1016/B978-1-85617-710-8.00004-2

Muhammad, I., Shalmani, A., Ali, M., Yang, Q.-H., Ahmad, H., & Li, F. B. (2021). Mechanisms regulating the dynamics of photosynthesis under abiotic stresses. Frontiers in Plant Science, 11. https://doi.org/10.3389/fpls.2020.615942

Navarro, A. A. (2019). Control de la contaminación atmosférica en la Zona Metropolitana del Valle de México. Estudios Demográficos y Urbanos, 34, 631‒663. https://doi.org/10.24201/edu.v34i3.1806

Secretaría de Salud. (2021). Norma Oficial Mexicana NOM-021-SSA1-2021. Salud ambiental. Criterio para evaluar la calidad del aire ambiente, con respecto al monóxido de carbono (CO) en el aire ambiente, como medida de protección a la salud de la población. Diario Oficial de la Federación (DOF). https://www.dof.gob.mx/nota_detalle.php?codigo=5634084&fecha=29/10/2021#gsc.tab=0

Secretaría de Salud. (2021). Norma Oficial Mexicana NOM-021-SSA1-2021. Salud ambiental. Criterio para evaluar la calidad del aire ambiente, con respecto al ozono (O3), como medida de protección a la salud de la población. Diario Oficial de la Federación (DOF). https://www.dof.gob.mx/nota_detalle.php?codigo=5633956&fecha=28/10/2021#gsc.tab=0

Secretaría de Salud. (2021). Norma Oficial Mexicana NOM-023-SSA1-2021. Salud ambiental. Criterio para evaluar la calidad del aire ambiente, con respecto al dióxido de nitrógeno (NO2), como medida de protección a la salud de la población. Diario Oficial de la Federación (DOF). https://dof.gob.mx/nota_detalle.php?codigo=5633854&fecha=27/10/2021#gsc.tab=0

Secretaría de Salud. (2021). Norma Oficial Mexicana NOM-025-SSA1-2021 Salud ambiental. Criterio para evaluar la calidad del aire ambiente, con respecto a las partículas suspendidas PM10 y PM2.5 como medida de protección a la salud de la población. https://dof.gob.mx/nota_detalle.php?codigo=5633855&fecha=27/10/2021#gsc.tab=0

Organización Mundial de la Salud (OMS). (2005). Guías de calidad del aire de la OMS relativas al material particulado, el ozono, el dióxido de nitrógeno y el dióxido de azufre. https://apps.who.int/iris/bitstream/handle/10665/69478/WHO_SDE_PHE_OEH_06.02_spa.pdf;jsessionid=2AC85F7FC5F727C4C6C10E06AE3CF64B?sequence=1

Pedrero, V., Reynaldos, G. K., Ureta, A. J., & Cortez, P. E. (2021). Generalidades del Machine Learning y su aplicación en la gestión sanitaria en servicios de urgencia. Revista Médica de Chile, 149(2), 248‒254. https://doi.org/10.4067/s0034-98872021000200248

Pérez, J. I. J., Némiga, X. A., Gaytán, J. F. M., Cedillo, J. G. G., Plata, M. Á. B., Loik, M. E., Sanabria, J. M. C. (2010). Variaciones climáticas en la Zona Metropolitana de la Ciudad de Toluca, Estado de México: 1960-2007. Ciencia Ergo-Sum, Revista Científica Multidisciplinaria de Prospectiva, 17(2), 143‒153. https://www.redalyc.org/articulo.oa?id=10413200004

Pérez, C. V., Schmelkes, E., López, C. O., Carrera, F., García, T. l. A. P., & Teruel, G. (2018). Ingreso y calidad del aire en ciudades: ¿Existe una curva de Kuznets para las emisiones del transporte en la Zona Metropolitana del Valle de México? El Trimestre Económico, 85(340), 745‒764. https://doi.org/10.20430/ete.v85i340.717

Pérez, V. Z. R., Ángeles, P. G., Chávez, V. B., Valdez, L. J. R., & Ramírez, G. M. E. (2021). Enfoque espacial para modelación de carbono en el mantillo de bosques bajo manejo forestal maderable. Madera y Bosques, 27(1). https://doi.org/10.21829/myb.2021.2712122

Popovicheva, O., Ivanov, A., & Vojtisek, M. (2020). Functional factors of biomass burning contribution to spring aerosol composition in a megacity: Combined FTIR-PCA Analyses. Atmosphere, 11(4), 19. https://doi.org/10.3390/atmos11040319

R Development Core Team. (2021). R: A Language and Environment for Statistical Computing. The R Foundation for Statistical Computing. https://www.R-project.org

Romieu, I., Meneses, F., Ruiz. S, Sienra, J. J., Huerta, J., White, M. C., & Etzel, R. A. (1996). Effects of air pollution on the respiratory health of asthmatic children living in Mexico City. American Journal of Respiratory and Critical Care Medicine, 154, 300‒307. https://doi.org/10.1164/ajrccm.154.2.8756798

Sandoval, J., & Jaimes, J. L. (2002). Formación de ozono en la Ciudad de México durante una porción de primavera e invierno en cámaras de esmog exteriores. Revista de la Sociedad Química de México, 46(2), 180‒184. https://www.redalyc.org/articulo.oa?id=47546217

Secretaría del Medio Ambiente (SEDEMA). (2018). Inventarios de emisiones de la ZMVM. https://www.sedema.cdmx.gob.mx/storage/app/media/DGCA/InventarioDeEmisionesZMVM2018.pdf

Sheinbaum, P. C. (2016). Contaminación atmosférica en la Zona Metropolitana del Valle de México. Revista Ciencia, 67, 70‒77. https://www.revistaciencia.amc.edu.mx/images/revista/67_3/PDF/Contaminacion.pdf

Shekaramiz, M., Moon, T. K., & Gunther, J. (2019). A note on Kriging and Gaussian processes. https://doi.org/10.13140/RG.2.2.36631.83367

Sheu, Y.-h. (2020). Illuminating the Black Box: Interpreting deep neural network models for psychiatric research. Frontiers in Psychiatry, 11. https://doi.org/10.3389/fpsyt.2020.551299

Villalobos, V. M. C. (2006). Inventario de emisiones de la ZMVM, 2006. http://186.96.0.232/aire/default.php?opc=Z6BhnmI=&dc=Zg==

Vinasco, S., Pablo, J., Nastar C., & Nastar del Rio, T. C. (2013). Variación espacial y temporal de concentraciones de PM10 en el área urbana de Santiago de Cali, Colombia. Ingeniería de Recursos Naturales y del Ambiente (12), 129‒141. https://www.redalyc.org/pdf/2311/231130851011.pdf

Wedyan, G. N., Osama T. Al., & Zainab M. A. (2020). The Influence of solar radiation on ozone column weight over Baghdad City. IOP Conference Series: Materials Science and Engineering, 928, 072089. https://doi.org/10.1088/1757-899X/928/7/072089

Xing, Y.-F., Xu, Y.-H., Shi, M.-H., & Lian, Y.-X. (2016). The impact of PM2.5 on the human respiratory system. Journal of Thoracic Disease, 8(1), E69‒E74. https://doi.org/10.3978/j.issn.2072-1439.2016.01.19

Yuan, Q., Shen, H., Li, T., Li, Z., Li, S., Jiang, Y., Xu, H., Tan, W., Yang, Q., & Wang, J. (2020). Deep learning in environmental remote sensing: Achievements and challenges. Remote Sensing Environment, 241, 111716. https://doi.org/10.1016/j.rse.2020.111716

Zhou, Y., Yue, Y., Bai, Y., & Zhang, L. (2020). Effects of rainfall on PM2.5 and PM10 in the middle reaches of the Yangtze River. Advances in Meteorology, 2398146. https://doi.org/10.1155/2020/2398146

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.

Derechos de autor 2023 Revista Chapingo Serie Ciencias Forestales y del Ambiente

Métricas

Cargando métricas ...