Revista Chapingo Serie Ciencias Forestales y del Ambiente
Caracterización ecológica del arbolado del Parque Nacional Molino de Flores Netzahualcóyotl
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF

Palabras clave

área natural protegida
arbolado urbano
bosque periurbano
estructura arbórea
índices de diversidad

Cómo citar

Hernández-López, P., Martínez-Trinidad, T., Hernández-de la Rosa, P., Mohedano-Caballero, L., & González Guillén, M. de J. (2023). Caracterización ecológica del arbolado del Parque Nacional Molino de Flores Netzahualcóyotl. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 29(3), 93–108. https://doi.org/10.5154/r.rchscfa.2023.01.002

##article.highlights##

  • Se identificaron 17 familias y 22 especies en el Parque Nacional Molino de Flores Netzahualcóyotl.
  • Eucalyptus camaldulensis tuvo mayor índice de valor de importancia urbano con 38.53 %.
  • La riqueza (≤1.67) y diversidad (≤0.61) del bosque periurbano fueron bajas.
  • El bosque tiene zonas con densidades muy bajas (<165 árboles∙ha -1 ) que pueden ser reforestadas.

Resumen

Introducción: El arbolado de las zonas urbanas y periurbanas genera bienes y servicios para la sociedad; por tanto, es importante conocer sus características ecológicas.
Objetivo: Determinar las características ecológicas del arbolado del bosque periurbano Parque Nacional Molino de Flores Netzahualcóyotl (PNMFN) en Texcoco, Estado de México.
Materiales y métodos: Se realizó un muestreo arbóreo estratificado donde se registró la especie, diámetro normal, altura, diámetro de copa, porcentaje de copa viva y densidad de copa. La riqueza y diversidad de especies se calculó con los índices de Margalef, Simpson (1-D) y la regla 10-20-30 de Santamour; además, se determinó el índice de valor de importancia urbano (IVIU).
Resultados y discusión: Se identificaron 17 familias y 22 especies. Eucalyptus camaldulensis Dehnh., Schinus molle L. y Casuarina equisetifolia L. representaron 55 % de los árboles muestreados. Se estimaron 7983 ± 806 árboles con una densidad de 163 árboles∙ha-1. El diámetro normal es de 26.56 ± 2.33 cm, la altura de 10.52 ± 0.6 m y la cobertura de copa equivale a 48.2 % de la superficie del parque (4819.88 m2∙ha-1). La riqueza (≤1.67) y diversidad (≤0.61) fueron bajas; las especies con mayor IVIU fueron E. camaldulensis, S. molle y Fraxinus uhdei (Wenz.) Lingelsh. con 38.53 %, 13.89 % y 10.62 %, respectivamente.
Conclusiones: La composición arbórea del PNMFN es similar a la de un bosque urbano, situación que contrasta con otras áreas naturales protegidas. Hay zonas con densidades muy bajas que pueden ser objeto de reforestación, la cual podría incrementar la diversidad y cobertura de copa que brinde mayor protección al suelo.

https://doi.org/10.5154/r.rchscfa.2023.01.002
PDF

Citas

Alanís, R. E., Mora, O. A., & Marroquín de la F., J. S. (2020). Muestreo ecológico de la vegetación. Editorial Universitaria UANL. https://www.researchgate.net/publication/343137042_Muestreo_Ecologico_de_la_vegetacion

Arroyave-Maya, M. D. P., Posada-Posada, M. I., Nowak, D. J., & Hoehn, R. E. (2019). Remoción de contaminantes atmosféricos por el bosque urbano en el valle de Aburrá. Colombia Forestal, 22(1), 5‒16. https://doi.org/10.14483/2256201X.13695

Avendaño-González, M., Badano, E. I., Ramírez-Albores, J. E., Flores, J., & Flores-Cano, J. A. (2016). Differential allelopathy between genders of an invasive dioecious tree on desert plants. Botanical Sciences, 94(2), 253‒262. https://doi.org/10.17129/botsci.522

Bartoli, F., Savo, V., & Caneva, G. (2021). Biodiversity of urban street trees in Italian cities: A comparative analysis. Plant Biosystems, 156(3), 649‒662. https://doi.org/10.1080/11263504.2021.1906347

Benavides, M. H. M., & Fernández, G. D. Y. (2012). Estructura del arbolado y caracterización dasométrica de la segunda sección del Bosque de Chapultepec. Madera y Bosques, 18(2), 51‒71. https://doi.org/10.21829/myb.2012.182352

Blood, A., Starr, G., Escobedo, F., Chappelka, A., & Staudhammer, C. (2016). How do urban forests compare? Tree diversity in urban and periurban forests of the southeastern US. Forests, 7(6), 120. https://doi.org/10.3390/f7060120

Calaza, P., Cariñanos, P., Escobedo, F. J., Schwab, J., & Tovar, G. (2018). Crear paisajes urbanos e infraestructura verde. Unasylva, 69, 11–21. https://www.fao.org/3/I8707ES/i8707es.pdf

Campagnaro, T., Sitzia, T., Cambria, V. E., & Semenzato, P. (2019). Indicators for the planning and management of urban green spaces: A focus on public areas in Padua, Italy. Sustainability, 11(24), 7071. https://doi.org/10.3390/su11247071

Canizales, V. P. A., Alanís, R. E., Holguín, E. V. A., García, G. S., & Collantes, C. C. A. (2020). Caracterización del arbolado urbano de la ciudad de Montemorelos, Nuevo León. Revista Mexicana de Ciencias Forestales, 11(62), 111–135. https://doi.org/10.29298/rmcf.v11i62.768

Canizales-Velázquez, P. A., Alanís-Rodríguez, E., García-García, S. A., Holguín-Estrada, V. A., & Collantes-Chávez-Costa., A. (2021). Estructura y diversidad de un bosque de galería urbano en el río Camachito, noreste de México. Polibotánica, 51, 91–105. https://doi.org/10.18387/polibotanica.51.6

Cervantes Bautista, M., Ortiz Barrios, R., & Reséndiz Martínez, J. F. (2019). Condición fitosanitaria del arbolado de la tercera sección del bosque de Chapultepec. Revista Mexicana de Agroecosistemas, 6(1), 122–135. https://rmae.voaxaca.tecnm.mx/wp-content/uploads/2020/11/12-RMAE_2019-10-Arbolado-To-edit.pdf

Comisión Nacional Forestal (CONAFOR). (2017). Inventario nacional forestal y de suelos. Procedimientos de muestreo versión 17.3. https://www.snieg.mx/DocAcervoINN/documentacion/inf_nvo_acervo/SNIGMA/Inv_Nac_For_Suelos/INFyS_2017_Procedimientos_de_muestreo_V_17_3.pdf

Cornejo-Tenorio, G., & Ibarra-Manríquez, G. (2017). Flora of the core zones of the Monarch Butterfly Biosphere Reserve, Mexico: composition, geographical affinities and beta diversity. Botanical Sciences, 95(1), 103–129. https://doi.org/10.17129/botsci.803

Di Rienzo, J. A., Casanoves, F., Balzarini, M. G., González, L., Tablada, M., & Robledo C. W. (2020). InfoStat versión 2020e. Universidad Nacional de Córdoba, Argentina. https://www.infostat.com.ar

Flores, A., Velasco-García, M. V., Muñoz-Gutiérrez, L., Martínez-Trinidad, T., Gómez-Cárdenas, M., & Román-Castillo, C. (2018). Especies arbóreas para conservar la biodiversidad en zonas urbanas. Mitigación del Daño Ambiental Agroalimentario y Forestal de México, 4(5), 136–151. https://www.researchgate.net/publication/329859297_TREE_SPECIES_FOR_BIODIVERSITY_CONSERVATION_IN_URBAN_ZONES

He, F., & Hu, X. S. (2005). Hubbell's fundamental biodiversity parameter and the Simpson diversity index. Ecology Letters, 8(4), 386-390. https://doi.org/10.1111/j.1461-0248.2005.00729.x

Hernández, H. J., & Villaseñor, N. R. (2018). Twelve-year change in tree diversity and spatial segregation in the Mediterranean city of Santiago, Chile. Urban Forestry & Urban Greening, 29, 10‒18. https://doi.org/10.1016/j.ufug.2017.10.017

Hernández, T. M. A., Hernández-Álvarez, E., Gallegos, R. A., Guzmán, P. C. M., & Bertolin, V. (2022). Modelo de inventario para el manejo del arbolado urbano empleando un sistema de información geográfica. E-CUCBA, 9(17), 211–221. https://doi.org/10.32870/ecucba.vi17.228

Herrera-Llampallas, A., Luque-Delgadillo, A., Ramírez-García, G., Espejel-García, A., Vázquez-Alarcón, A., Gómez-Díaz, J. D., & Monterroso-Rivas, A. I. (2018). Estado de los recursos naturales en el Parque Nacional Molino de Flores Netzahualcóyotl. Biotecnología en el Sector Agropecuario y Agroindustrial, 16(2), 46–57. https://doi.org/10.18684/bsaa.v16n2.1165

Hirsch, H., Allsopp, M. H., Canavan, S., Cheek, M., Geerts, S., Geldenhuys, C. J, Harding, G., Hurley, B. P., Jones, W., Keet, J. H., Klein, H., Ruwanza, S., Wilgen, B. W., Wingfield, M. J., & Richardson, D. M. (2020). Eucalyptus camaldulensis in South Africa–past, present, future. Transactions of the Royal Society of South Africa, 75(1), 1‒22. https://doi.org/10.1080/0035919X.2019.1669732

Imaña, E. J., Antunes, S. O., & Rainier, I. C. (2011). Estructura diamétrica de un fragmento del bosque tropical seco de la región del Eco-museo del Cerrado, Brasil. Colombia Forestal, 14(1), 23‒30. https://doi.org/10.14483/udistrital.jour.colomb.for.2011.1.a02

Korhonen, L., Korhonen, K. T., Rautiainen, M., & Stenberg, P. (2006). Estimation of forest canopy cover: a comparison of field measurement techniques. Silva Fennica, 40(4), 577–588. https://doi.org/10.14214/sf.315

Koricho, H. H., Seboka, A. D., & Song, S. (2020). Assessment of the structure, diversity, and composition of woody species of urban forests of Adama city, Central Ethiopia. Arboricultural Journal, 1–12. https://doi.org/10.1080/03071375.2020.1798702

Leal, E. C. E., Leal, E. N., Alanís, R. E., Pequeño, L. M. A., Mora, O. A., & Buendia, R. E. (2018). Estructura, composición y diversidad del arbolado urbano de Linares, Nuevo León. Revista Mexicana de Ciencias Forestales, 9(48), 252–270. https://doi.org/10.29298/rmcf.v8i48.129

Magurran, A. E. (2004). Measuring biological diversity. Blackwell Publishing. https://www.wiley.com/en-us/Measuring+Biological+Diversity-p-9781118687925

Martínez-Trinidad, T., Hernández-López, P., López-López, S. F., & Mohedano-Caballero, L. (2021). Diversidad, estructura y servicios ecosistémicos del arbolado en cuatro parques de Texcoco mediante i-Tree Eco. Revista Mexicana de Ciencias Forestales, 12(67), 202–223. https://doi.org/10.29298/rmcf.v12i67.880

Montesinos, L. O., Luna, E. I., Hernández, S. C. M., & Tinoco, Z. M. Á. (2009). Muestreo estadístico. Tamaño de muestra y estimación de parámetros. Universidad de Colima.

Morgenroth, J., Nowak, D., & Koeser, A. (2020). DBH Distributions in America’s urban forests—an overview of structural diversity. Forests, 11(2), 135. https://doi.org/10.3390/f11020135

Morgenroth, J., Östberg, J., Konijnendijk, C., Nielsen, A. B., Hauer, R., Sjöman, H., Chen, W., & Jansson, M. (2016). Urban tree diversity—Taking stock and looking ahead. Urban Forestry & Urban Greening, 15, 1–5. https://doi.org/10.1016/j.ufug.2015.11.003

Nowak, D. J. (2018). Mejorar los bosques urbanos a través de la evaluación, la modelización y el seguimiento. Unasylva, 69, 30–36. https://www.fao.org/3/I8707ES/i8707es.pdf

Nowak, D. J., & Greenfield, E. J. (2018). US urban forest statistics, values, and projections. Journal of Forestry, 116(2), 164‒177. https://doi.org/10.1093/jofore/fvx004

Paquette, A., Sousa-Silva, R., Maure, F., Cameron, E., Belluau, M., & Messier, C. (2021). Praise for diversity: A functional approach to reduce risks in urban forests. Urban Forestry & Urban Greening, 62, 127–157. https://doi.org/10.1016/j.ufug.2021.127157

Petucco, C., Jensen, F. S., Meilby, H., & Skovsgaard, J. P. (2018). Visitor preferences of thinning practice in young even-aged stands of pedunculate oak (Quercus robur L.): comparing the opinion of forestry professionals in six European countries. Scandinavian Journal of Forest Research, 33(1), 81-90. https://doi.org/10.1080/02827581.2017.1329455

Pincetl, S., Gillespie, T., Pataki, D. E., Saatchi, S., & Saphores, J. D. (2013). Urban tree planting programs, function or fashion? Los Angeles and urban tree planting campaigns. GeoJournal, 78, 475–493. https://doi.org/10.1007/s10708-012-9446-x

Pregitzer, C. C., Ashton, M. S., Charlop-Powers, S., D’Amato, A. W., Frey, B. R., Gunther, B., Hallett, R. A., Pregitzer, K. S., Woodall, C. W., & Bradford, M. A. (2019). Defining and assessing urban forests to inform management and policy. Environmental Research Letters, 14(8), 085002. https://doi.org/10.1088/1748-9326/ab2552

Riley, C. B., Herms, D. A., & Gardiner, M. M. (2018). Exotic trees contribute to urban forest diversity and ecosystem services in inner-city Cleveland, OH. Urban Forestry & Urban Greening, 29, 367–376. https://doi.org/10.1016/j.ufug.2017.01.004

Román-Guillén, L. M., Orantes-García, C., del Carpio-Penagos, C. U., Sánchez-Cortés, M. S., Ballinas-Aquino, M. L., & Farrera S. Ó. (2019). Diagnóstico del arbolado de alineación de la ciudad de Tuxtla Gutiérrez, Chiapas. Madera y Bosques, 25(1). e2511559. https://doi.org/10.21829/myb.2019.2511559

Saavedra-Romero, L. de L., Hernández-de la Rosa, P., Alvarado-Rosales, D., Martínez-Trinidad, T., & Villa-Castillo, J. (2019). Diversidad, estructura arbórea e índice de valor de importancia en un bosque urbano de la Ciudad de México. Polibotánica, 47, 25–37. https://doi.org/10.18387/polibotanica.47.3

Salbitano, F., Borelli, S., Conigliaro, M., & Chen, Y. (2017). Directrices para la silvicultura urbana y periurbana. Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO).

Santamour, F. S. (1990). Trees for urban planting: Diversity, uniformity, and common sense. Proceedings of the Seventh Conference of The Metropolitan Tree Improvement Alliance, 7, 57–65. https://es.scribd.com/document/506012515/Estudio-30-20-10-Trees-for-urban-planting-por-Frank-Santamour#

Santilli, L., Castro, S. A., Figueroa, J. A., Guerrero, N., Ray, C., Romero-Mieres, M., Rojas, G., & Lavandero, N. (2018). Exotic species predominates in the urban woody flora of central Chile. Gayana Botánica, 75(2), 568‒588. https://doi.org/10.4067/S0717-66432018000200568

Savard, J.-P. L., Clergeau, P., & Mennechez, G. (2000). Biodiversity concepts and urban ecosystems. Landscape and Urban Planning, 48(3–4), 131–142. https://doi.org/10.1016/S0169-2046(00)00037-2

Schroeder, H. W., & Green, T. L. (1985). Public preference for tree density in municipal parks. Journal of Arboriculture, 11(9), 272‒277. https://doi.org/10.48044/jauf.1985.061

Secretaría del Medio Ambiente y Recursos Naturales (SEMARNAT) & Comisión Nacional de Áreas Naturales Protegidas (CONANP). (2017). Áreas Naturales Protegidas Federales de México. Noviembre 2017. Catálogo de metadatos geográficos. http://geoportal.conabio.gob.mx/metadatos/doc/html/anpnov17gw.html

Sjöman, H., Morgenroth, J., Sjöman, J. D., Sæbø, A., & Kowarik, I. (2016). Diversification of the urban forest—Can we afford to exclude exotic tree species? Urban Forestry & Urban Greening, 18, 237–241. https://doi.org/10.1016/j.ufug.2016.06.011

Stereńczak, K., Kraszewski, B., Mielcarek, M., & Piasecka, Ż. (2017). Inventory of standing dead trees in the surroundings of communication routes – The contribution of remote sensing to potential risk assessments. Forest Ecology and Management, 402, 76–91. https://doi.org/10.1016/j.foreco.2017.07.018

Templeton, L. K., Neel, M. C., Groffman, P. M., Cadenasso, M. L., & Sullivan, J. H. (2019). Changes in vegetation structure and composition of urban and rural forest patches in Baltimore from 1998 to 2015. Forest Ecology and Management, 454, 117665. https://doi.org/10.1016/j.foreco.2019.117665

Tlapa, A. M., Bustamante, G. A., Vargas, L. S., Ramírez, V. B., Cervantes, G. V., & Cruz, B. G. (2020). Factores del deterioro de las áreas naturales protegidas periurbanas del Valle de Puebla, México. Estudios Demográficos y Urbanos, 35(1), 51–82. https://doi.org/10.24201/edu.v35i1.1828

Xu, S., Böttcher, L., & Chou, T. (2020). Diversity in biology: definitions, quantification and models. Physical Biology, 17(3), 031001. https://doi.org/10.1088/1478-3975/ab6754

Zambrano, A. Y., Demey, J. R., Fuenmayor, F., Segovia, V., & Gutiérrez, Z. (2003). Diversidad genética de una colección de yuca a través de marcadores moleculares RAPDs. Agronomía Tropical, 53(2), 155‒174. https://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0002-192X2003000200004

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.

Derechos de autor 2023 Revista Chapingo Serie Ciencias Forestales y del Ambiente