Revista Chapingo Serie Ciencias Forestales y del Ambiente
Genetic characteristics of wood properties of 14 clones of Gmelina arborea Roxb. in the South Pacific of Costa Rica
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF

Keywords

stem height
heartwood
heritability
gmelina
genetic ranking

How to Cite

Cruz-Vargas, M. A., Gaitán-Álvarez, J., Ávila-Arias, C., Moya, R., & Murillo-Cruz, R. (2023). Genetic characteristics of wood properties of 14 clones of Gmelina arborea Roxb. in the South Pacific of Costa Rica. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 29(3), 147–165. https://doi.org/10.5154/r.rchscfa.2022.12.083

##article.highlights##

  • Growth parameters had no significant variation among the 14 clones.
  • Clone had no significant effect on specify gravity or moisture content.
  • Individual heritability was high only for heartwood percentage.
  • Ranking analysis revealed four top clones with potential for improvement.

Abstract

Introduction: Gmelina arborea Roxb. is planted in reforestation programs with clones to improve productivity.
Objectives: We aimed to evaluate wood properties and determine the heritability of 14 clones of G. melina to establish a genetic ranking for selection.
Materials and methods: The trial was established with a randomized complete block design (six blocks of six individuals of each clone of 36 months of age). Basal area and volume, tree morphological properties (diameter, bark, sapwood and heartwood) and wood physical properties (specific gravity, green density and moisture content) were estimated for each individual.
Results and discussion: Growth parameters were not significantly different (P > 0.05) among the 14 clones. Clone had no significant effect on specific weight and moisture content in the genetic analysis, while tree stem height had a significant impact on all variables. The clone*height interaction was not significant for the variables studied. As for genetic control, high individual heritability values were determined only for heartwood percentage. The ranking analysis evidenced that the best clones were 1, 7, 12 and 13, positioning themselves in category 1.
Conclusions: Four clones were higher regarding growth and some wood properties, showing potential for further genetic improvement of G. arborea in reforestation programs. 

https://doi.org/10.5154/r.rchscfa.2022.12.083
PDF

References

Ataguba, C. O., Enwelu, C., Aderibigbe, W., & Okiwe, E. O. (2015). A comparative study of some mechanical properties of Gmelina arborea, Parkia biglobosa and Prosopis africana timbers for structural use. International Journal of Technical Research and Applications, 3(3), 320‒324. https://www.ijtra.com/view/a-comparative-study-of-some-mechanical-properties-of-gmelina-arborea-parkia-biglobosa-and-prosopis-africana-timbers-for-structural-use.pdf

Abarca-Alvarado, M., Moya, R., Chinchilla-Mora, O., & Avila-Arias, C. (2023). Control of wood properties, drying and workability of nine 8-year-old clones of Swietenia macrophylla King grown in Costa Rica. Cellulose Chemistry and Technology, 57(3-4), 213‒226. https://doi.org/10.35812/CelluloseChemTechnol.2023.57.21

Arguedas, M., Rodriguez-Solis, M., Moya, R., & Berrocal, A. (2018). Gmelina arborea “death disease” in fast-growth plantations: Effects of soil and climatic conditions on severity and incidence and its implications for wood quality. Forest Systems, 27(1), e003. https://doi.org/10.5424/fs/2018271-12236

ASTM International. (2022a). Standard Methods of testing small clear specimens of timber. ASTM D-143-22. https://doi.org/10.1520/D0143-22

ASTM International. (2022b). Standard Test methods for density and specific gravity (relative density) of wood and wood-based materials. D5865M-22. https://doi.org/10.1520/D2395-17R22

Ávila-Arias, C., Murillo-Cruz, R., Murillo-Gamboa, O., & Sandoval-Sandoval, C. (2014). Desarrollo juvenil de clones de Gmelina arborea Roxb. de dos procedencias, en sitios planos del Pacífico Sur de Costa Rica. Revista Forestal Mesoamericana Kurú, 12(28), 23. https://doi.org/10.18845/rfmk.v12i28.2097

Ávila-Arias, C., Murillo-Cruz, R., Murillo-Gamboa, O., & Sandoval-Sandoval, C. (2015). Interacción genotipo sitio para dos conjuntos clonales de Gmelina arborea Roxb., en sitios planos del Pacífico Sur de Costa Rica. Revista Forestal Mesoamericana Kurú, 12(29), 02. https://revistas.tec.ac.cr/index.php/kuru/article/view/2250/2033

Borpuzari, P. P., & Kachari, J. (2019). Clonal propagation of Gmelina arborea Roxb. An important multipurpose tree species of north eastern region. International Journal of Herbal Medicine, 7(6), 10–15. https://www.florajournal.com/archives/2019/vol7issue6/PartA/7-4-51-530.pdf

Dehaspe, J., Venegas Cordero, N., Chavarría-Palma, A., & Capell, R. (2022). Projected climate change impacts on tropical life zones in Costa Rica. Progress in Physical Geography, 46(2), 180–200. https://doi.org/10.1177/03091333211047046

Gion, J.-M., Carouché, A., Deweer, S., Bedon, F., Pichavant, F., Charpentier, J.-P., & Plomion, C. (2011). Comprehensive genetic dissection of wood properties in a widely-grown tropical tree: Eucalyptus. BMC Genomics, 12(1), 301. https://doi.org/10.1186/1471-2164-12-301

Hernández-Castro, W., Badilla Valverde, Y., & Murillo-Gamboa, O. (2021a). Estimación de parámetros genéticos de Gmelina arborea Roxb. (melina) en el Caribe de Costa Rica. Uniciencia, 35(1), 352–366. https://doi.org/10.15359/ru.35-1.22

Hernández-Castro, W., Murillo-Gamboa, O., & Badilla-Valverde, Y. (2021b). Selección temprana en ensayos clonales de melina (Gmelina arborea Robx.) en Costa Rica. Agronomía Mesoamericana, 32(1), 93–106. https://doi.org/10.15517/am.v32i1.42069

Hidayati, F., Ishiguri, F., Makino, K., Tanabe, J., Aiso, H., Prasetyo, V. E., & Yokota, S. (2017). The effects of radial growth rate on wood properties and anatomical characteristics and an evaluation of the xylem maturation process in a tropical fast-growing tree species, Gmelina arborea. Forest Products Journal, 67(3–4), 297–303. https://doi.org/10.13073/FPJ-D-16-00027

Ioannidis, K., & Koropouli, P. (2023). Quantitative genetic parameters of heartwood and its chemical traits in a black pine (Pinus nigra JF Arnold) clonal seed orchard established in Greece. New Zealand Journal of Forestry Science, 53. doi: https://doi.org/10.33494/nzjfs532023x249x

Iwuoha, S. E., Seim, W., & Onyekwelu, J. C. (2021). Mechanical properties of Gmelina arborea for engineering design. Construction and Building Materials, 288, 123123. https://doi.org/10.1016/j.conbuildmat.2021.123123

Kaith, M., Tirkey, P., Bhardwaj, D. R., Kumar, J., & Kumar, J. (2023). Carbon sequestration potential of forest plantation soils in eastern plateau and hill region of India: a promising approach toward climate change mitigation. Water, Air, & Soil Pollution, 234(6), 341. https://doi.org/10.1007/s11270-023-06364-y

Kumar, A. (2007). Growth performance and variability in different clones of Gmelina arborea (Roxb.). Silvae Genetica, 56(1-6), 32‒36. https://doi.org/10.1023/B:NEFO.0000040940.32574.22

Li, C., Weng, Q., Chen, J.-B., Li, M., Zhou, C., Chen, S., & Gan, S. (2017). Genetic parameters for growth and wood mechanical properties in Eucalyptus cloeziana F. Muell. New Forests, 48(1), 33–49. https://doi.org/10.1007/s11056-016-9554-4

Makouanzi, G., Chaix, G., Nourissier, S., & Vigneron, P. (2018). Genetic variability of growth and wood chemical properties in a clonal population of Eucalyptus urophylla × Eucalyptus grandis in the Congo. Southern Forests: A Journal of Forest Science, 80(2), 151–158. https://doi.org/10.2989/20702620.2017.1298015

Moya, R. (2004). Effect of management treatment and growing regions on wood properties of Gmelina arborea in Costa Rica. New Forests, 28(2-3), 325‒330. https://doi.org/10.1023/B:NEFO.0000040965.76119.bc

Moya, R., & Tomazello, M. (2007). Wood density and fiber dimensions of Gmelina arborea in fast growth trees in Costa Rica: relation to the growth rate. Revista Investigación Agraria: Sistemas y Recursos Forestales, 16(3), 267–276. https://doi.org/10.5424/srf/2007163-01015

Moya-Roque, R., Muñoz-Acosta, F., Salas-Garita, C., Berrocal-Jiménez, A., Leandro-Zúñiga, L., & Esquivel-Segura, E. (2010). Tecnología de madera de plantaciones forestales: Fichas técnicas. Revista Forestal Mesoamericana Kurú, 7(18-19), 1–189.

Nunes, A. C. P., Santos, G. A., Resende, M. D. V., Silva, L. D., Higa, A., & Assis, T. F. (2016). Estabelecimento de zonas de melhoramento para clones de eucalipto no Rio Grande do Sul. Scientia Forestalis, 44(111), 563–574. https://doi.org/10.18671/scifor.v44n111.03

Ortega-Ramírez, M. E., Castro-Osorio, A., Torres-Lamas, S., & González-Cortés, N. (2022). Clonal propagation of Gmelina arborea Roxb. grown in southeastern Mexico. Agro Productividad, 13(9), 1‒10. https://doi.org/10.32854/agrop.v15i5.1870

Paine, C. E. T., Stahl, C., Courtois, E. A., Patiño, S., Sarmiento, C., & Baraloto, C. (2010). Functional explanations for variation in bark thickness in tropical rain forest trees. Functional Ecology, 24(6), 1202–1210. https://doi.org/10.1111/j.1365-2435.2010.01736.x

Pande, P. K., & Singh, M. (2005). Inter-clonal, intra-clonal, and single tree variations of wood anatomical properties and specific gravity of clonal ramets of Dalbergia sissoo Roxb. Wood Science and Technology, 39(5), 351–366. https://doi.org/10.1007/s00226-004-0273-1

Patil, Y. B., Saralch, H. S., Chauhan, S. K., & Dhillon, G. P. S. (2017). Effect of growth hormone (IBA and NAA) on rooting and sprouting behaviour of Gmelina arborea (Roxb.). Indian Forester, 143(2), 81–85. https://www.researchgate.net/profile/Gurvinder-Pal-Dhillon/publication/317401593_Effect_of_growth_hormone_IBA_and_NAA_on_rooting_and_sprouting_behaviour_of_Gmelina_arborea_Roxb/links/5a2a41eca6fdccfbbf81be9e/Effect-of-growth-hormone-IBA-and-NAA-on-rooting-and-sprouting-behaviour-of-Gmelina-arborea-Roxb.pdf

Pinnschmidt, A., Yousefpour, R., Nölte, A., Murillo, O., & Hanewinkel, M. (2023). Economic potential and management of tropical mixed-species plantations in Central America. New Forests, 54(3), 565–586. https://doi.org/10.1007/s11056-022-09937-7

Resende, M. D. (2016). Software Selegen-REML/BLUP: a useful tool for plant breeding. Crop Breeding and Applied Biotechnology, 16(4), 330‒339. https://doi.org/10.1590/1984-70332016v16n4a49

Resende, M. D. (2002). Biometric and statistical genetics in perennial plant breeding= genética biométrica e estatística no melhoramento de plantas perenes. Embrapa Florestas. https://www.bdpa.cnptia.embrapa.br/consulta/busca?b=pc&id=306061&biblioteca=vazio&busca=autoria:%22RESENDE,%20M.%22&qFacets=autoria:%22RESENDE,%20M.%22&sort=&paginacao=t&paginaAtual=1

Rocha, O. J., Méndez, L., Alvarez, D., Rojas-Parajeles, F., & Murillo-Gamboa, O. (2020). Isolation and characterization of fifteen microsatellite loci for the use in breeding of Gmelina arborea Roxb. (Lamiaceae). Genetic Resources, 1(2), 23–28. https://doi.org/10.46265/genresj.LLTJ1737

Rodríguez-Pérez, D., Moya, R., Murillo, O., Gaitán-álvarez, J., & Badilla-Valverde, Y. (2022). Variation and genetic control of the heartwood, sapwood, bark, wood color parameter, and physical and mechanical properties of Dipteryx panamensis in Costa Rica. Forests, 13(1), 1–13. https://doi.org/10.3390/f13010106

Taylor, A. M., Gartner, B. L., & Morrell, J. J. (2002). Heartwood formation and natural durability - A review. Wood and Fiber Science, 34(4), 587–611. https://wfs.swst.org/index.php/wfs/article/view/539/539

Tenorio, C., Moya, R., Salas, C., & Berrocal, A. (2016). Evaluation of wood properties from six native species of forest plantations in Costa Rica. Bosque (Valdivia), 37(1), 71–84. https://doi.org/10.4067/S0717-92002016000100008

Vásquez-Bautista, N., Zamudio-Sánchez, F. J., Alvarado-Segura, A. A., & Romo-Lozano, J. L. (2016). Modelos biométricos forestales en Hidalgo, México: estado del arte. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 22(3), 351–367. https://doi.org/10.5154/r.rchscfa.2015.09.043.

Weber, J. C., & Sotelo-Montes, C. (2008). Geographic variation in tree growth and wood density of Guazuma crinita Mart. in the Peruvian Amazon. New Forests, 36(1), 29–52. https://doi.org/10.1007/s11056-007-9080-5

Wilson, B. G., & Witkowski, E. T. F. (2003). Seed banks, bark thickness and change in age and size structure (1978-1999) of the African savanna tree, Burkea africana. Plant Ecology, 167(1), 151–162. https://doi.org/10.1023/A:1023999806577

Zobel, B. J., & Jett, J. B. (1995). The role of genetics in wood production — General Concepts. In T. E. Timell (Ed.), Springer Series In Wood Science (pp. 1–25). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-79514-5_1

Zobel, B. J., & van Buijtenen, J. P. (1989). Wood variation and wood properties (pp. 1–32). Springer Series in Wood Science (pp. 1–25). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-74069-5_1

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2023 Revista Chapingo Serie Ciencias Forestales y del Ambiente