Revista Chapingo Serie Ciencias Forestales y del Ambiente
Water erosion, soil organic carbon redistribution and soil and water conservation: a review
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF

Keywords

watershed
mineralization
check dams
sediment
carbon sink

How to Cite

Aguirre-Salado, O. T., Pérez-Nieto, J., Aguirre-Salado, C. A., Monterroso-Rivas, A. I., & Gallardo-Lancho, J. F. (2023). Water erosion, soil organic carbon redistribution and soil and water conservation: a review. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 29(3), 47–60. https://doi.org/10.5154/r.rchscfa.2022.10.075

Abstract

Introduction: Soil loss caused by water erosion impacts both positive and negative fluxes of carbon to the atmosphere.

Objective: To identify the main research trends related to the influence of water erosion on soil organic carbon (SOC) redistribution and its relationship with soil and water conservation practices.

Materials and methods. Literature published in national and international journals was consulted in Web of Science, Scopus, SciELO, Redalyc, ResearchGate and Google Scholar. Research trends were analyzed using predefined keywords and grouped according to their affinity.

Results: In the period 2012-2022, 80 % of global research focused on SOC redistribution caused by the effect of water erosion and the effect of soil management and conservation practices; however, no studies were found in this regard in Mexico. Due to water erosion, programs for the construction of soil and water conservation works have been implemented in Mexico with significant success, such as sediment control dams, but the impacts in terms of C storage have not been evaluated.

Conclusions: In Mexico there are areas of opportunity to focus research at different scales: (I) analyze the redistribution of SOC caused by water erosion, (II) estimate the storage of SOC in sediments, (III) analyze the potential of mechanical soil and water conservation practices as carbon sinks, and (IV) propose a risk index of SOC loss using remote sensing.

https://doi.org/10.5154/r.rchscfa.2022.10.075
PDF

References

Addisu, S., & Mekonnen, M. (2019). Check dams and storages beyond trapping sediment, carbon sequestration for climate change mitigation, Northwest Ethiopia. Geoenvironmental Disasters, 6(1), 4. https://doi.org/10.1186/s40677-019-0120-1

Ayala, M. D., Monterroso, R. A., Baca, D. J., Escamilla, P. E., Sánchez, H. R., Pérez, N. J., & Valdés, V. E. (2020). Identificación de necesidades de investigación sobre la dinámica de carbono y nitrógeno en sistemas agroforestales de café en México. Tropical and Subtropical Agroecosystems, 23, 99. https://www.revista.ccba.uady.mx/ojs/index.php/TSA/article/view/3403/1499

Barrales, B. E., Paz, P. F., Etchevers, B. J., Hidalgo, M. C., & Velázquez, R. A. (2020). Dinámica de carbono en agregados del suelo con diferentes tipos de usos de suelo en el monte Tláloc, Estado de México. Terra Latinoamericana, 38(2), 275—288. https://doi.org/10.28940/terra.v38i2.680

Berhe, A. A., & Kleber, M. (2013). Erosion, deposition, and the persistence of soil organic matter: mechanistic considerations and problems with terminology. Earth Surface Processes and Landforms, 38(8), 908—912. https://doi.org/10.1002/esp.3408

Bolaños, G. M., Paz, P. F., Cruz, G. C., Argumedo, E. J., Romero, B. V., & De la Cruz, C. J. (2016). Mapa de erosión de los suelos de México y posibles implicaciones en el almacenamiento de carbono orgánico del suelo. Terra Latinoamericana, 34(3), 271—288. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0187-57792016000300271&lng=es&tlng=es

Cantú, S. I., & Yáñez, D. M. (2018). Efecto del cambio de uso de suelo en el contenido del carbono orgánico y nitrógeno del suelo. Revista Mexicana de Ciencias Forestales, 9(45), 122—151. https://doi.org/10.29298/rmcf.v9i45.138

Chen, D., Wei, W., Daryanto, S., & Tarolli, P. (2020). Does terracing enhance soil organic carbon sequestration? A national-scale data analysis in China. Science of the Total Environment, 721, 137751. https://doi.org/10.1016/j.scitotenv.2020.137751

Cotler, H., Cram, S., Martinez T. S., & Bunge, V. (2015). Evaluación de prácticas de conservación de suelos forestales en México: caso de las zanjas trinchera. Investigaciones Geográficas, (88), 6—18. https://doi.org/10.14350/rig.47378

Cotler, H., Martínez, M., & Etchevers, J. D. (2016). Carbono orgánico en suelos agrícolas de México: Investigación y políticas públicas. Terra Latinoamericana, 34(1), 125—138. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0187-57792016000100125&lng=es&tlng=es

Deumlich, D., Ellerbrock, R. H., & Frielinghaus, M. (2018). Estimating carbon stocks in young moraine soils affected by erosion. CATENA, 162, 51—60. https://doi.org/10.1016/j.catena.2017.11.016

Doetterl, S., Berhe, A. A., Nadeu, E., Wang, Z., Sommer, M., & Fiener, P. (2016). Erosion, deposition and soil carbon: A review of process-level controls, experimental tools and models to address C cycling in dynamic landscapes. Earth-Science Reviews, 154, 102—122. https://doi.org/10.1016/j.earscirev.2015.12.005

Etchevers, J. D., Prat, C., Balbontín, C., Bravo, M., & Martínez, M. (2006). Influence of land use on carbon sequestration and erosion in Mexico, a review. Agronomie, 26(1), 21—28. https://doi.org/10.1051/agro:2005053

Gallardo, L. J. (2021). Manejos edáficos óptimos y captura de carbono: con referencia a suelos de Iberoamérica. Industria Química, (92), 74—82. https://www.academia.edu/49973332/Manejos_ed%C3%A1ficos_%C3%B3ptimos_y_captura_de_carbono_con_referencia_a_suelos_de_Iberoam%C3%A9rica

Gaspar, L., Mabit, L., Lizaga, I., & Navas, A. (2020). Lateral mobilization of soil carbon induced by runoff along karstic slopes. Journal of Environmental Management, 260, 110091. https://doi.org/10.1016/j.jenvman.2020.110091

González, M. L., Acosta, M. M., Carrillo, A. F., Báez, P. A., & González, C. J. M. (2014). Cambios de carbono orgánico del suelo bajo escenarios de cambio de uso de suelo en México. Revista Mexicana de Ciencias Agrícolas, 5(7), 1275—1285. http://www.scielo.org.mx/pdf/remexca/v5n7/v5n7a11.pdf

Holz, M., & Augustin, J. (2021). Erosion effects on soil carbon and nitrogen dynamics on cultivated slopes: A metaanalysis. Geoderma, 397, 115045. https://doi.org/10.1016/j.geoderma.2021.115045

Ji, Y., Chen, L., Zhou, G., Sun, R., Shang, L., & Wang, S. (2014). Assessment of the redistribution of soil carbon using a new index—a case study in the Haihe River Basin, North China. Environmental Monitoring and Assessment, 186(11), 8023—8036. https://doi.org/10.1007/s10661-014-3985-1

Kirkels, F. M., Cammeraat, L. H., & Kuhn, N. J. (2014). The fate of soil organic carbon upon erosion, transport and deposition in agricultural landscapes—A review of different concepts. Geomorphology, 226, 94—105. https://doi.org/10.1016/j.geomorph.2014.07.023

Lal, R. (2003). Soil erosion and the global carbon budget. Environment International, 29(4), 437—450. https://doi.org/10.1016/S0160-4120(02)00192-7

Lal, R. (2013). Intensive agriculture and the soil carbon pool. Journal of Crop Improvement, 27(6), 735—751. https://doi.org/10.1080/15427528.2013.845053

Lal, R. (2018). Sustainable intensification of China’s agroecosystems by conservation agriculture. International Soil and Water Conservation Research, 6(1), 1—12. https://doi.org/10.1016/j.iswcr.2017.11.001

Lal, R. (2019). Accelerated soil erosion as a source of atmospheric CO2. Soil and Tillage Research, 188, 35—40. https://doi.org/10.1016/j.still.2018.02.001

Lal, R. (2020). Soil erosion and gaseous emissions. Applied Sciences, 10(8), 2784. https:// doi.org/10.3390/app12010048

Lal, R., Monger, C., Nave, L., & Smith, P. (2021). The role of soil in regulation of climate. Philosophical Transactions of the Royal Society B, 376(1834). https://doi.org/10.1098/rstb.2021.0084

Liu, C., Li, Z., Chang, X., He, J., Nie, X., Liu, L., & Zeng, G. (2018). Soil carbon and nitrogen sources and redistribution as affected by erosion and deposition processes: A case study in a loess hillygully catchment, China. Agriculture, Ecosystems & Environment, 253, 11—22. https://doi.org/10.1016/j.agee.2017.10.028

Liu, C., Li, Z., Dong, Y., Nie, X., Liu, L., Xiao, H., & Zeng, G. (2017). Do land use change and check-dam construction affect a real estimate of soil carbon and nitrogen stocks on the Loess Plateau of China? Ecological Engineering, 101, 220—226. http://doi.org/10.1016/j.ecoleng.2017.01.036

Lü, Y., Sun, R., Fu, B., & Wang, Y. (2012). Carbon retention by check dams: regional scale estimation. Ecological Engineering, 44, 139—146. https://doi.org/10.1016/j.ecoleng.2012.03.020

Marqués, M. J., Alvarez, A., Carral, P., Sastre, B., & Bienes, R. (2020). The use of remote sensing to detect the consequences of erosion in gypsiferous soils. International Soil and Water Conservation Research, 8(4), 383—392. https://doi.org/10.1016/j.iswcr.2020.10.001

Mchunu, C., & Chaplot, V. (2012). Land degradation impact on soil carbon losses through water erosion and CO2 emissions. Geoderma, 177, 72—79. https://doi.org/10.1016/j.geoderma.2012.01.038

Mengistu, D., Bewket, W., & Lal, R. (2016). Conservation effects on soil quality and climate change adaptability of Ethiopian watersheds. Land Degradation & Development, 27(6), 1603—1621. https://doi.org/10.1002/ldr.2376

Müller, N. D., & Chaplot, V. (2015). Soil carbon losses by sheet erosion: a potentially critical contribution to the global carbon cycle. Earth Surface Processes and Landforms, 40(13), 1803—1813. https://doi.org/10.1002/esp.3758

Nadeu, E., Gobin, A., Fiener, P., Van Wesemael, B., & Van Oost, K. (2015). Modelling the impact of agricultural management on soil carbon stocks at the regional scale: the role of lateral fluxes. Global Change Biology, 21(8), 3181—3192. https://doi.org/10.1111/gcb.12889

Novara, A., Keesstra, S., Cerdà, A., Pereira, P., & Gristina, L. (2016). Understanding the role of soil erosion on CO2-C loss using 13C isotopic signatures in abandoned Mediterranean agricultural land. Science of the Total Environment, 550, 330—336. https://doi.org/10.1016/j.scitotenv.2016.01.095

Olson, K. R., Al-Kaisi, M., Lal, R., & Cihacek, L. (2016). Impact of soil erosion on soil organic carbon stocks. Journal of Soil and Water Conservation, 71(3), 61A—67A. https://doi.org/10.2489/jswc.71.3.61A

Olson, K. R., Gennadiyev, A. N., Zhidkin, A. P., & Markelov, M. V. (2012). Impacts of land-use change, slope, and erosion on soil organic carbon retention and storage. Soil Science, 177(4), 269—278. https://doi.org/10.1097/SS.0b013e318244d8d2

Organización de las Naciones Unidas para la Alimentación y Agricultura (FAO). (2017). Carbono orgánico del suelo: el potencial oculto. FAO. https://www.fao.org/documents/card/es/c/b3fc8b3c-3afa-46ca-9883-96f6c3113549/

QSR International. (2018). NVivo qualitative data analysis. Version 12 [software]. https://support.qsrinternational.com/nvivo/s/

Seifu, W., Elias, E., Gebresamuel, G., & Khanal, S. (2021). Impact of land use type and altitudinal gradient on topsoil organic carbon and nitrogen stocks in the semi-arid watershed of northern Ethiopia. Heliyon, 7(4), e06770. https://doi.org/10.1016/j.heliyon.2021.e06770

Segura, C. M., Sánchez, G. P., Ortiz, S. C., & del Carmen, G. C. (2005). Carbono orgánico de los suelos de México. Terra Latinoamericana, 23(1), 21—28. https://www.redalyc.org/articulo.oa?id=57323103

Shi, P., Zhang, Y., Li, P., Li, Z., Yu, K., Ren, Z., & Ma, Y. (2019). Distribution of soil organic carbon impacted by land-use changes in a hilly watershed of the Loess Plateau, China. Science of the Total Environment, 652, 505—512. https://doi.org/10.1016/j.scitotenv.2018.10.172

Singh, P., & Benbi, D. K. (2018). Soil organic carbon pool changes in relation to slope position and land-use in Indian lower Himalayas. CATENA, 166, 171—180. 10.1016/j.catena.2018.04.006

Srinivasarao, C., Lal, R., Kundu, S., & Thakur, P. B. (2015). Conservation agriculture and soil carbon sequestration. In M. Farooq, & K. Siddique (Eds.), Conservation agriculture (pp. 479—524). Springer, Cham. https://doi.org/10.1007/978-3-319-11620-4_19

Tong, L. S., Fang, N. F., Xiao, H. B., & Shi, Z. H. (2020). Sediment deposition changes the relationship between soil organic and inorganic carbon: Evidence from the Chinese Loess Plateau. Agriculture, Ecosystems & Environment, 302, 107076. https://doi.org/10.1016/j.agee.2020.107076

Velásquez, V. M. A., Martínez, B. O. U., Esquivel, A. G., Bueno, H. P., & Sánchez, C. I. (2016). Organic carbon transport under simulated rainfall conditions for different land uses. Revista Chapingo Serie Zonas Áridas, 15(1), 29—45. doi: https://doi.org/10.5154/r.rchsza.2015.08.009

Wang, X., Cammeraat, E. L., Cerli, C., & Kalbitz, K. (2014a). Soil aggregation and the stabilization of organic carbon as affected by erosion and deposition. Soil Biology and Biochemistry, 72, 55—65. https://doi.org/10.1016/j.soilbio.2014.01.018

Wang, X., Cammeraat, E. L., Romeijn, P., & Kalbitz, K. (2014b). Soil organic carbon redistribution by water erosion–the role of CO2 emissions for the carbon budget. PLoS ONE, 9(5), e96299. https://doi.org/10.1371/journal.pone.0096299

Wang, Y., Chen, L., Gao, Y., Wang, S., Lü, Y., & Fu, B. (2014c). Carbon sequestration function of check-dams: a case study of the Loess Plateau in China. Ambio, 43(7), 926—931. https://doi.org/10.1007/s13280-014-0518-7

Wang, L., Huang, X., Fang, N. F., Niu, Y. H., Wang, T. W., & Shi, Z. H. (2019). Selective transport of soil organic and inorganic carbon in eroded sediment in response to raindrop sizes and inflow rates in rainstorms. Journal of Hydrology, 575, 42—53. https://doi.org/10.1016/j.jhydrol.2019.05.033

Wei, S., Zhang, X., McLaughlin, N. B., Chen, X., Jia, S., & Liang, A. (2017). Impact of soil water erosion processes on catchment export of soil aggregates and associated SOC. Geoderma, 294, 63—69. https://doi.org/10.1016/j.geoderma.2017.01.021

Xiao, H., Li, Z., Chang, X., Huang, B., Nie, X., Liu, C., & Jiang, J. (2018). The mineralization and sequestration of organic carbon in relation to agricultural soil erosion. Geoderma, 329, 73—81. https://doi.org/10.1016/j.geoderma.2018.05.018

Yue, Y., Ni, J., Ciais, P., Piao, S., Wang, T., Huang, M., & Van Oost, K. (2016). Lateral transport of soil carbon and land− atmosphere CO2 flux induced by water erosion in China. Proceedings of the National Academy of Sciences, 113(24), 6617—6622. https://doi.org/10.1073/pnas.1523358113

Zamora, M. B., Mendoza, C. M., Sangerman, J. D., Quevedo, N. A., & Navarro, B. A. (2018). El manejo del suelo en la conservación de carbono orgánico. Revista Mexicana de Ciencias Agrícolas, 9(8), 1787—1799. https://doi.org/10.29312/remexca.v9i8.1723

Zamora, M. B., Mendoza, C. M., Sangerman, J. D. M., Quevedo, N. A., & Navarro, B. A. (2019). La investigación científica en México: secuestro de carbono orgánico en suelos agrícolas y de agostadero. Revista Mexicana de Ciencias Agrícolas, 10(1), 155—164. https://doi.org/10.29312/remexca.v10i1.1733

Zhang, H., Liu, S., Yuan, W., Dong, W., Xia, J., Cao, Y., & Jia, Y. (2016). Loess Plateau check dams can potentially sequester eroded soil organic carbon. Journal of Geophysical Research: Biogeosciences, 121(6), 1449—1455. https://doi.org/10.1002/2016JG003348

Zhang, X., Li, Z., Nie, X., Huang, M., Wang, D., Xiao, H., & Zeng, G. (2019). The role of dissolved organic matter in soil organic carbon stability under water erosion. Ecological Indicators, 102, 724—733. https://doi.org/10.1016/j.ecolind.2019.03.038

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2023 Revista Chapingo Serie Ciencias Forestales y del Ambiente