Revista Chapingo Serie Ciencias Forestales y del Ambiente
Variación fitoquímica entre procedencias de oyamel (Abies religiosa [Kunth] Schltdl. & Cham.) en un gradiente altitudinal
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF

Palabras clave

terpenos
metabolitos secundarios
perfil químico
índices de diversidad
análisis multivariados

Cómo citar

Cruzado-Vargas, A. L., García-Rodríguez, Y. M., Ortiz-Bibian, M. A., Espinosa-García, F. J., Antonio-López, P., Sáenz-Romero, C., & Lindig-Cisneros, R. A. (2022). Variación fitoquímica entre procedencias de oyamel (Abies religiosa [Kunth] Schltdl. & Cham.) en un gradiente altitudinal . Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 28(3), 427–445. https://doi.org/10.5154/r.rchscfa.2022.01.003

Resumen

Introducción: Las poblaciones de una especie son diferentes a lo largo de su distribución por la presión de selección del gradiente climático.
Objetivo: Describir la variación fitoquímica entre 14 procedencias en un gradiente altitudinal de Abies religiosa (Kunth) Schltdl. & Cham., para determinar si existen asociaciones de perfiles químicos entre poblaciones, expresados bajo un solo ambiente.
Materiales y métodos: Se recolectaron semillas de 165 árboles de un transecto altitudinal de 2850 a 3540 m en el cerro de San Andrés, Municipio Libre de Hidalgo, Michoacán, México. La planta se produjo en ensayo de jardín común; a los 28 meses se recolectaron acículas maduras por individuo y se analizaron por cromatografía de gases-masas. Los datos se analizaron con índices de diversidad, análisis de varianza y multivariados (componentes principales, correspondencias y conglomerados).
Resultados y discusión: Se identificaron 32 compuestos, la mayoría terpenos. Las poblaciones presentaron diferencias en presencia/ausencia de terpenos y en su concentración; arriba de 3350 m, la diversidad fue más baja, pero con mayor concentración. Se encontraron tres grupos de altitud con base en el perfil químico de las poblaciones: baja = 2850 a 3300 m y 3400 m; intermedia = 3350, 3450 y 3500 m; y elevada = 3540 m.
Conclusiones: La diversidad y concentración de los terpenos en A. religiosa variaron en función de la altitud de las poblaciones. Existen tres perfiles químicos que deben considerarse en el establecimiento de programas de recolecta de germoplasma para reforestación y restauración.

https://doi.org/10.5154/r.rchscfa.2022.01.003
PDF

Citas

Abbas, F., Ke, Y., Yu, R., Yue, Y., Amanullah, S., Jahangir, M. M., & Fan, Y. (2017). Volatile terpenoids: multiple functions, biosynthesis, modulation and manipulation by genetic engineering. Planta, 246(5), 803—816. doi: https://doi.org/10.1007/s00425-017-2749-x

Adams, R. P. (2007). Identification of essential oil components by gas chromatography/mass spectrometry (4th ed.). Carol Stream, Illinois: Allured Publishing Corporation.

Agilent Technologies Inc. (2004). MSD ChemStation D.01.02.16. Germany: Author.

Castellanos-Acuña, D., Lindig-Cisneros, R. A., Silva-Farias, M. Á., & Sáenz-Romero, C. (2014). Provisional altitudinal zoning of Abies religiosa in an area near the Monarch Butterfly Biosphere Reserve, Michoacán. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 20(2), 215—225. doi: https://doi.org/10.5154/r.rchscfa.2013.11.041

Cruzado-Vargas, A. L., Blanco-García, A., Lindig-Cisneros, R., Gómez-Romero, M., Lopez-Toledo, L., de la Barrera, E., & Sáenz-Romero, C. (2021). Reciprocal common garden altitudinal transplants reveal potential negative impacts of climate change on Abies religiosa populations in the Monarch Butterfly Biosphere Reserve overwintering sites. Forests, 12(1), 69. doi: https://doi.org/10.3390/f12010069

García-Rodríguez, Y. M., Bravo-Monzón, Á., Martínez-Díaz, Y., Torres-Gurrola, G., & Espinosa-García, F. J. (2012). Variación fitoquímica defensiva en ecosistemas terrestres. In J. C. Rojas & E. A. Malo (Eds.), Temas selectos en ecología química de insectos (pp. 217—252). México: El Colegio de la Frontera Sur.

García‐Rodríguez, Y. M., Torres‐Gurrola, G., Meléndez‐González, C., & Espinosa‐García, F. J. (2016). Phenotypic variations in the foliar chemical profile of Persea americana Mill. cv. Hass. Chemistry & Biodiversity, 13(12), 1767—1775. doi: https://doi.org/10.1002/cbdv.201600169

Gómez-Pineda, E., Hammond, W. M., Trejo-Ramirez, O., GilFernández, M., Allen, C. D., Blanco-García, A., & SáenzRomero, C. (2022). Drought years promote bark beetle outbreaks in Mexican forests of Abies religiosa and Pinus pseudostrobus. Forest Ecology and Management, 505, 119944. doi: https://doi.org/10.1016/j.foreco.2021.119944

Gómez‐Pineda, E., Sáenz‐Romero, C., Ortega‐Rodríguez, J. M., Blanco‐García, A., Madrigal‐Sánchez, X., Lindig‐Cisneros, R., …Rehfeldt, G. E. (2020). Suitable climatic habitat changes for Mexican conifers along altitudinal gradients under climatic change scenarios. Ecological Applications, 30(2), e02041. doi: https://doi.org/10.1002/eap.2041

Hammer, Ø., Harper, D. A., & Ryan, P. D. (2001). PAST: Paleontological Statistics Software Package for education and data analysis. Retrieved from http://www.palaeo-electronica.org/2001_1/past/issue1_01.htm

Hengxiao, G., McMillin, J. D., Wagner, M. R., Zhou, J., Zhou, Z., & Xu, X. (1999). Altitudinal variation in foliar chemistry and anatomy of yunnan pine, Pinus yunnanensis, and pine sawfly (Hym., Diprionidae) performance. Journal of Applied Entomology, 123(8), 465—471. doi: https://doi.org/10.1046/j.1439-0418.1999.00395.x

Heredia-Bobadilla, R. L., Arzate-Fernández, A. M., GutiérrezGonzález, G., Santillán-Benítez, J. G., Cibrián-Tovar, D., & Endara-Agramont, A. R. (2014). Genes de defensa en Abies religiosa. Botanical Sciences, 92(4), 623—628. Retrieved from http://www.scielo.org.mx/pdf/bs/v92n4/v92n4a14.pdf

Hernández-Álvarez, A. G., Reyes-Ortiz, J. L., Villanueva-Díaz, J., & Sánchez-González, A. (2021). Variation in the Abies religiosa(Pinaceae) forest structure, at different management and disturbance conditions. Acta Botánica Mexicana, (128), e1752. doi: https://doi.org/10.21829/abm128.2021.1752

Ignazi, G., Mathiasen, P., & Premoli, A. C. (2019). Climatic gradients model genetic diversity in widespread woody trees: the case of Nothofagus pumilio in the southern Andes. Revista Ecosistemas, 28(1), 35—47. doi: https://doi.org/10.7818/ECOS.1547

Iñíguez Guillén, R. M., Esqueda Reyes, H. C., Escoto García, T., Guillermo Ochoa, H., Rodríguez Rivas, A., & Contreras Quiñonez, H. J. (2014). Chemical characterization of essential oils and wood extracts from two pine species of La Primavera forest. Revista Mexicana de Ciencias Forestales, 6(28), 42—57. Retrieved from http://www.scielo.org.mx/pdf/remcf/v6n28/v6n28a4.pdf

Isidorov, V. A., Stocki, M., & Vetchinikova, L. (2019). Inheritance of specific secondary volatile metabolites in buds of white birch Betula pendula and Betula pubescens hybrids. Trees, 33(5), 1329—1344. doi: https://doi.org/10.1007/s00468-019-01861-2

Kopaczyk, J. M., Warguła, J., & Jelonek, T. (2020). The variability of terpenes in conifers under developmental and environmental stimuli. Environmental and Experimental Botany, 104197. doi: https://doi.org/10.1016/j.envexpbot.2020.104197

Litvak, M. E., & Monson, R. K. (1998). Patterns of induced and constitutive monoterpene production in conifer needles in relation to insect herbivory. Oecologia, 114(4), 531—540. doi: https://doi.org/10.1007/s004420050477

Lockhart, L. A. (1990). Chemotaxonomic relationships within the Central American closed-cone pines. Silvae Genetica, 39(5-6), 173—184. Retrieved from https://eurekamag.com/research/007/108/007108216.php

López-Goldar, X., Villari, C., Bonello, P., Borg-Karlson, A. K., Grivet, D., Zas, R., & Sampedro, L. (2018). Inducibility of plant secondary metabolites in the stem predicts genetic variation in resistance against a key insect herbivore in maritime pine. Frontiers in Plant Science, 9, 1651. doi: https://doi.org/10.3389/fpls.2018.01651

López-Gómez, V., Arriola Padilla, V. J., & Pérez Miranda, R. (2015). Damages from abiotic and biotic factors in fir (Abies religiosa (Kunth) Schltdl. et Cham.) forests of the Monarch Butterfly Biosphere Reserve. Revista Mexicana de Ciencias Forestales, 6(29), 56—73. Retrieved from http://www.scielo.org.mx/pdf/remcf/v6n29/v6n29a5.pdf

Lundborg, L., Fedderwitz, F., Björklund, N., Nordlander, G., & Borg-Karlson, A. -K. (2016). Induced defenses change the chemical composition of pine seedlings and influence meal properties of the pine weevil Hylobius abietis. Phytochemistry, 130, 99—105. doi: https://doi.org/10.1016/j.phytochem.2016.06.002

Materić, D., Bruhn, D., Turner, C., Morgan, G., Mason, N., & Gauci, V. (2015). Methods in plant foliar volatile organic compounds research. Applications in Plant Sciences, 3(12), 1500044. doi: https://doi.org/10.3732/apps.1500044

Moreira, X., Mooney, K. A., Rasmann, S., Petry, W. K., Carrillo‐Gavilán, A., Zas, R., & Sampedro, L. (2014). Trade‐offs between constitutive and induced defences drive geographical and climatic clines in pine chemical defences. Ecology Letters, 17(5), 537—546. doi: https://doi.org/10.1111/ele.12253

Muenchow, J., Dieker, P., Kluge, J., Kessler, M., & von Wehrden, H. (2018). A review of ecological gradient research in the Tropics: identifying research gaps, future directions, and conservation priorities. Biodiversity and Conservation, 27(2), 273—285. doi: https://doi.org/10.1007/s10531-017-1465-y

Mullin, M., Klutsch, J., Cale, J., Hussain, A., Zhao, S., Whitehouse, C., & Erbilgin, N. (2021). Primary and secondary metabolite profiles of lodgepole pine trees change with elevation, but not with latitude. Journal of Chemical Ecology, 47(3), 280—293. doi: https://doi.org/10.1007/s10886-021-01249-y

Oberhauser, K. S., Nail, K. R., & Altizer, S. (2015). Monarchs in a changing world: biology and conservation of an iconic butterfly. USA: Cornell University Press.

Ortiz-Bibian, M. A., Blanco-García, A., Lindig-Cisneros, R. A., GómezRomero, M., Castellanos-Acuña, D., Herrerías-Diego, Y., … Sáenz-Romero, C. (2017). Genetic variation in Abies religiosa for quantitative traits and delineation of elevational and climatic zoning for maintaining Monarch Butterfly overwintering sites in Mexico, considering climatic change. Silvae Genetica, 66(1), 14—23. doi: https://doi.org/10.1515/sg-2017-0003

Ortiz-Bibian, M. A., Castellanos-Acuña, D., Gómez-Romero, M., Lindig-Cisneros, R., Silva-Farías, M. Á., & Sáenz-Romero, C. (2019). Variación entre poblaciones de Abies religiosa (HBK) Schl. et Cham a lo largo de un gradiente altitudinal. I. Capacidad germinativa de la semilla. Revista Fitotecnia Mexicana, 42(3), 301—308. Retrieved from http://www.scielo.org.mx/pdf/rfm/v42n3/0187-7380-rfm-42-03-00301.pdf

Pellissier, L., Moreira, X., Danner, H., Serrano, M., Salamin, N., van Dam, N. M., & Rasmann, S. (2016). The simultaneous inducibility of phytochemicals related to plant direct and indirect defences against herbivores is stronger at low elevation. Journal of Ecology, 104(4), 1116—1125. doi: https://doi.org/10.1111/1365-2745.12580

Pezet, J., Elkinton, J., Gomez, S., Mckenzie, E. A., Lavine, M., & Preisser, E. (2013). Hemlock woolly adelgid and elongate hemlock scale induce changes in foliar and twig volatiles of eastern hemlock. Journal of Chemical Ecology, 39(8), 1090—1100. doi: https://doi.org/10.1007/s10886-013-0300-5

Phillips, M. A., & Croteau, R. B. (1999). Resin-based defenses in conifers. Trends in Plant Science, 4(5), 184—190. doi: https://doi.org/10.1016/S1360-1385(99)01401-6

Pichersky, E., & Raguso, R. A. (2018). Why do plants produce so many terpenoid compounds? New Phytologist, 220(3), 692—702. doi: https://doi.org/10.1111/nph.14178

Pokorska, O., Dewulf, J., Amelynck, C., Schoon, N., Šimpraga, M., Steppe, K., & Van Langenhove, H. (2012). Isoprene and terpenoid emissions from Abies alba: Identification and emission rates under ambient conditions. Atmospheric Environment, 59, 501—508. doi: https://doi.org/10.1016/j.atmosenv.2012.04.061

Premoli, A. C., Acosta, M. C., Mathiasen, P., & Donoso, C. (2012). Genetic variation in Nothofagus (subgenus Nothofagus). Bosque (Valdivia), 33(2), 115—125. doi: https://doi.org/10.4067/S0717-92002012000200001

R Development Core Team. (2020). R: A language and environment for statistical computing. Viena, Austria: R Foundation for Statistical Computing. Retrieved from R-project.org/

Raffa, K. F., Mason, C. J., Bonello, P., Cook, S., Erbilgin, N., Keefover‐Ring, K., …Townsend, P. A. (2017). Defence syndromes in lodgepole–whitebark pine ecosystems relate to degree of historical exposure to mountain pine beetles. Plant, Cell & Environment, 40(9), 1791—1806. doi: https://doi.org/10.1111/pce.12985

Rasmann, S., Pellissier, L., Defossez, E., Jactel, H., & Kunstler, G. (2014). Climate‐driven change in plant–insect interactions along elevation gradients. Functional Ecology, 28(1), 46—54. doi: https://doi.org/10.1111/1365-2435.12135

Robert, J. A., Madilao, L. L., White, R., Yanchuk, A., King, J., & Bohlmann, J. (2010). Terpenoid metabolite profiling in Sitka spruce identifies association of dehydroabietic acid,(+)-3-carene, and terpinolene with resistance against white pine weevil. Botany, 88(9), 810—820. doi: https://doi.org/10.1139/B10-049

Rodríguez‐Castañeda, G., Dyer, L. A., Brehm, G., Connahs, H., Forkner, R. E., & Walla, T. R. (2010). Tropical forests are not flat: how mountains affect herbivore diversity. Ecology Letters, 13(11), 1348—1357. doi: https://doi.org/10.1111/j.1461-0248.2010.01525.x

Rodríguez Trejo, D. A., Aparicio Lechuga, M., Lara Bueno, A., Uribe Gómez, M., & Ramírez Castell, P. (2021). Abies Mill. (Pinaceae). In D. A. Rodríguez Trejo (Ed.), Semillas de especies forestales (pp. 3—14). Estado de México, México: División de Ciencias Forestales, Universidad Autónoma Chapingo.

Rubin-Aguirre, A., Saenz-Romero, C., Lindig-Cisneros, R., del-RioMora, A., Tena-Morelos, C., Campos-Bolaños, R., & Del-Val, E. (2015). Bark beetle pests in an altitudinal gradient of a Mexican managed forest. Forest Ecology and Management, 343, 73—79. doi: https://doi.org/10.1016/j.foreco.2015.01.028

Sáenz‐Romero, C., Lamy, J. B., Ducousso, A., Musch, B., Ehrenmann, F., Delzon, S., …Hansen, J. K. (2017). Adaptive and plastic responses of Quercus petraea populations to climate across Europe. Global Change Biology, 23(7), 2831—2847. doi: https://doi.org/10.1111/gcb.13576

Sáenz-Romero, C., Lindig-Cisneros, R. A., Joyce, D. G., Beaulieu, J., St Clair, J. B., & Jaquish, B. C. (2016). Assisted migration of forest populations for adapting trees to climate change. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 22(3), 303—323. doi: https://doi.org/10.5154/r.rchscfa.2014.10.052

Sáenz-Romero, C., Rehfeldt, G. E., Duval, P., & Lindig-Cisneros, R. A. (2012). Abies religiosa habitat prediction in climatic change scenarios and implications for monarch butterfly conservation in Mexico. Forest Ecology and Management, 275, 98—106. doi: https://doi.org/10.1016/j.foreco.2012.03.004

Santos, M. J., & Whitham, T. G. (2010). Predictors of Ips confususoutbreaks during a record drought in southwestern USA: implications for monitoring and management. Environmental Management, 45(2), 239—249. doi: https://doi.org/10.1007/s00267-009-9413-6

SAS Institute Inc. (2015). SAS Institute (version 9.4.TS Level 1 M3). Cary, North Carolina, USA: Author.

Sosa Díaz, L., Méndez González, J., García Aranda, M. A., Cambrón Sandoval, V. H., Villarreal Quintanilla, J. Á., Ruiz González, C. G., & Montoya Jiménez, J. C. (2018). Distribución potencial de barrenadores, defoliadores, descortezadores y muérdagos en bosques de coníferas de México. Revista Mexicana de Ciencias Forestales, 9(47), 187—208. doi: https://doi.org/10.29298/rmcf.v9i47.159

Stein, S. E., Mirokhin, Y., Tchekhovskoi, D., & Mallard, G. (2012). NIST/EPA/NIH Mass Spectral Library (Version 2.0). Gaithersburg, USA: National Institute of Standards and Technology. Retrieved from https://chemdata.nist.gov/

Taft, S., Najar, A., Godbout, J., Bousquet, J., & Erbilgin, N. (2015). Variations in foliar monoterpenes across the range of jack pine reveal three widespread chemotypes: implications to host expansion of invasive mountain pine beetle. Frontiers in Plant Science, 6, 342. doi: https://doi.org/10.3389/fpls.2015.00342

Trowbridge, A. M., Adams, H. D., Collins, A., Dickman, L. T., Grossiord, C., Hofland, M., …Stoy, P. C. (2021). Hotter droughts alter resource allocation to chemical defenses in piñon pine. Oecologia, 197(4), 921—938. doi: https://doi.org/10.1007/s00442-021-05058-8

Večeřová, K., Klem, K., Veselá, B., Holub, P., Grace, J., & Urban, O. (2021). Combined effect of altitude, season and light on the accumulation of extractable terpenes in Norway spruce needles. Forests, 12(12), 1737. doi: https://doi.org/10.3390/f12121737

Viveros-Viveros, H., Tapia-Olivares, B. L., Sáenz-Romero, C., Vargas-Hernández, J. J., López-Upton, J., Santacruz-Varela, A., & Ramírez-Valverde, G. (2010). Isoenzymatic variation of Pinus hartwegii Lindl. along an altitudinal gradient in Michoacán, México. Agrociencia, 44(6), 723—733. Retrieved from www.scielo.org.mx/pdf/agro/v44n6/v44n6a11.pdf

Whitehill, J. G., Yuen, M. M., Henderson, H., Madilao, L., Kshatriya, K., Bryan, J., … Bohlmann, J. (2019). Functions of stone cells and oleoresin terpenes in the conifer defense syndrome. New Phytologist, 221(3), 1503—1517. doi: https://doi.org/10.1111/nph.15477

Zas Arregui, R., & Sampedro Pérez, L. (2015). Resistencia de los pinos a plagas y enfermedades: nuevas oportunidades de control fitosanitario. Cuadernos de la Sociedad Española de Ciencias Forestales, 39, 259—273. doi: https://doi.org/10.31167/csef.v0i39.17466

Zenkevich, I. G. (2010). Kovats´ retention index system. In J. Cazes (Ed.), Encyclopedia of chromatography (3rd. ed., pp. 1304—1310). Boca Raton, Florida, USA: CRC Press.

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.

Derechos de autor 2022 Revista Chapingo Serie Ciencias Forestales y del Ambiente