Resumen
Introducción: El cambio climático repercutirá diferencialmente en el crecimiento de los bosques de montaña con respecto a la elevación.
Objetivo: Evaluar las interrelaciones de los componentes de los anillos de crecimiento en los extremos del gradiente altitudinal de Pinus hartwegii Lindl. en tres montañas del centro-oriente de México.
Materiales y métodos: Se analizaron 295 muestras de árboles del Cofre de Perote, Pico de Orizaba y Monte Tláloc correspondientes al periodo 1960-2017 con un total de 17 700 observaciones por variable (anchura y densidad del anillo [ATA, DTA], de madera temprana [AEW, DEW], tardía [ALW, DLW] y densidad mínima y máxima [DMI, DMA]).
Resultados y discusión: Los parámetros de crecimiento fueron mayores en el extremo inferior (≈3 500 m). La correlación de ATA con AEW (r ≥ 0.95) y ALW (r ≥ 0.78) fue significativa (P < 0.05). La DTA se correlacionó con DEW (r ≥ 0.83) y DMI (r ≥ 0.72), así como DEW con DMI (r ≥ 0.92) y DLW con DMA (r ≥ 0.92). En el extremo superior (≈4 000 m), las correlaciones de ATA, AEW y ALW con DTA, DEW y DMI fueron negativas (-0.3 ≥ r ≥ -0.8). Esto puede explicarse por menores temperaturas y periodos de crecimiento que reducen la importancia relativa de la madera tardía en la amplitud del anillo.
Conclusiones: La información generada contribuye a entender la dinámica de la xilogénesis de P. hartwegii en respuesta al clima y sus posibles implicaciones en el crecimiento radial ante el cambio climático.
Citas
Antonucci, S., Rossi, S., Deslauriers, A., Morin, H., Lombardi, F., Marchetti, M., & Tognetti, R. (2017). Large-scale estimation of xylem phenology in black spruce through remote sensing. Agricultural and Forest Meteorology, 233, 92–100. doi: https://doi.org/10.1016/j.agrformet.2016.11.011
Arias, N. S., Bucci, S. J., Scholz, F. G., & Goldstein, G. (2015). Freezing avoidance by supercooling in Olea europaea cultivars: the role of apoplastic water, solute content and cell wall rigidity. Plant, Cell & Environment, 38(10), 2061–2070. doi: https://doi.org/10.1111/pce.12529
Babst, F., Bouriaud, O., Alexander, R., Trouet, V., & Frank, D. (2014). Toward consistent measurements of carbon accumulation: A multi-site assessment of biomass and basal area increment across Europe. Dendrochronologia, 32(2), 153–161. doi: https://doi.org/10.1016/j.dendro.2014.01.002
Björklund, J., Seftigen, K., Schweingruber, F., Fonti, P., Arx, G., Bryukhanova, M. V., …Frank, D. C. (2017). Cell size and wall dimensions drive distinct variability of earlywood and latewood density in Northern Hemisphere conifers. New Phytologist, 216(3), 728–740. doi: https://doi.org/10.1111/nph.14639
Camarero, J. J., Rozas, V., & Olano, J. M. (2014). Minimum wood density of Juniperus thurifera is a robust proxy of spring water availability in a continental Mediterranean climate. Journal of Biogeography, 41(6), 1105–1114. doi: https://doi.org/10.1111/jbi.12271
Cerano-Paredes, J., Villanueva-Díaz, J., Fulé, P. Z., ArreolaÁvila, J. G., Sánchez-Cohen, I., & Valdez-Cepeda, R. D. (2016). Reconstrucción de 350 años de precipitación para el suroeste de Chihuahua, México. Madera y Bosques, 15(2), 27–44. doi: https://doi.org/10.21829/myb.2009.1521189
Cerrato, R., Salvatore, M. C., Gunnarson, B. E., Linderholm, H. W., Carturan, L., Brunetti, M., De Blasi, F., & Baroni, C. (2019). A Pinus cembra L. tree-ring record for late spring to late summer temperature in the Rhaetian Alps, Italy. Dendrochronologia, 53, 22–31. doi: https://doi.org/10.1016/j.dendro.2018.10.010
Correa-Díaz, A., Gómez-Guerrero, A., Vargas-Hernández, J. J., Rozenberg, P., & Horwath, W. R. (2020). Long-term wood micro-density variation in alpine forests at Central Mexico and their spatial links with remotely sensed information. Forests, 11(4), 1–18. doi: https://doi.org/10.3390/F11040452
Dalla-Salda, G., Martinez-Meier, A., Cochard, H., & Rozenberg, P. (2011). Genetic variation of xylem hydraulic properties shows that wood density is involved in adaptation to drought in Douglas-fir (Pseudotsuga menziesii (Mirb.). Annals of Forest Science, 68(4), 747–757. doi: https://doi.org/10.1007/s13595-011-0091-1
Düthorn, E., Schneider, L., Günther, B., Gläser, S., & Esper, J. (2016). Ecological and climatological signals in treering width and density chronologies along a latitudinal boreal transect. Scandinavian Journal of Forest Research, 31(8), 750–757. doi: https://doi.org/10.1080/02827581.2016.1181201
Franco-Maass, S., Regil-García, H. H., & Ordóñez-Díaz, J. A. B. (2016). Dinámica de perturbación-recuperación de las zonas forestales en el Parque Nacional Nevado de Toluca. Madera y Bosques, 12(1), 17–28. doi: https://doi.org/10.21829/myb.2006.1211247
García, E. (2004). Modificaciones al sistema de clasificación climática de Köppen, para adaptarlo a las condiciones de la República Mexicana (5.ª ed.). México: Instituto de Geografía, UNAM.
Gindl, W., Grabner, M., & Wimmer, R. (2000). The influence of temperature on latewood lignin content in treeline Norway spruce compared with maximum density and ring width. Trees, 14(7), 409–414. doi: https://doi.org/10.1007/s004680000057
Gómez-Guerrero, A., Silva, L. C. R., Barrera-Reyes, M., Kishchuk, B., Velázquez-Martínez, A., MartínezTrinidad, T., … Horwath, W. R. (2013). Growth decline and divergent tree ring isotopic composition (δ13C and δ18O) contradict predictions of CO2 stimulation in high altitudinal forests. Global Change Biology, 19(6), 1748–1758. doi: https://doi.org/10.1111/gcb.12170
IUSS Working Group WRB. (2015). World Reference Base for Soil Resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. Rome: FAO.Körner, C. (2012). Alpine treelines. Functional ecology of the global high elevation tree limits. Cham: Springer Science & Business Media. doi: https://doi.org/10.1007/978-3-0348-0396-0
Li, X., Liang, E., Gričar, J., Rossi, S., Čufar, K., & Ellison, A. M. (2017). Critical minimum temperature limits xylogenesis and maintains treelines on the southeastern Tibetan Plateau. Science Bulletin, 62(11), 804–812. doi: https://doi.org/10.1016/j.scib.2017.04.025
Mendivelso, H. A., Camarero, J. J., & Gutierrez, E. (2016). Dendrocronología en bosques neotropicales secos: métodos, avances y aplicaciones. Ecosistemas, 25(2), 66–75. doi: https://doi.org/10.7818/ECOS.2016.25-2.08
Morgado-González, G., Gómez-Guerrero, A., Villanueva-Díaz, J., Terrazas, T., Ramírez-Herrera, C., & Hernández-de la Rosa, P. (2019). Wood density of Pinus hartwegii Lind. at two altitude and exposition levels. Agrociencia, 53(4), 645–660.
Mothe, F., Duchanois, G., Zannier, B., & Leban, J.-M. (1998). Analyse microdensitométrique appliquée au bois : méthode de traitement des données utilisée à l’Inra-ERQB (programme Cerd). Annales Des Sciences Forestières, 55(3), 301–313. doi: https://doi.org/10.1051/forest:19980303
Moyes, A. B., Castanha, C., Germino, M. J., & Kueppers, L. M. (2013). Warming and the dependence of limber pine (Pinus flexilis) establishment on summer soil moisture within and above its current elevation range. Oecologia, 171(1), 271–282. doi: https://doi.org/10.1007/s00442-012-2410-0
Park, Y. I., & Spiecker, H. (2005). Variations in the treering structure of Norway spruce (Picea abies) under
contrasting climates. Dendrochronologia, 23(2), 93–104. doi: https://doi.org/10.1016/j.dendro.2005.09.002
Pompa-García, M., Camarero, J. J., Colangelo, M., & GallardoSalazar, J. L. (2021). Xylogenesis is uncoupled from
forest productivity. Trees, 35, 1123–1134. doi: https://doi.org/10.1007/s00468-021-02102-1
Pompa-García, M., & Venegas-González, A. (2016). Temporal variation of wood density and carbon in two elevational sites of Pinus cooperi in relation to climate response in northern Mexico. PLoS ONE, 11(6), e0156782. doi: https://doi.org/10.1371/journal.pone.0156782
Rathgeber, C. B. K. (2017). Conifer tree-ring density interannual variability - anatomical, physiological and environmental determinants. The New Phytologist, 216(3), 621–625. doi: https://doi.org/10.1111/nph.14763
Rozenberg, P., Chauvin, T., Escobar-Sandoval, M., Huard, F., Shishov, V., Charpentier, J.-P., …Pâques, L. (2020). Climate warming differently affects Larix decidua ring formation at each end of a French Alps elevational gradient. Annals of Forest Science, 77(2), 54. doi: https://doi.org/10.1007/s13595-020-00958-w
Rozenberg, P., Sergent, A.-S., Dalla-Salda, G., MartinezMeier, A., Marin, S., Ruiz-Diaz, M., …Bréda, N. (2012). Analyse rétrospective de l’adaptation à la sécheresse chez le douglas. Schweizerische Zeitschrift Fur Forstwesen, 163(3), 88–95. doi: https://doi.org/10.3188/szf.2012.0088
Sanfuentes, C., Sierra-Almeida, A., & Cavieres, L. A. (2012). Efecto del aumento de la temperatura en la fotosíntesis de una especie alto-andina en dos altitudes. Gayana Botánica, 69(1), 37–45. doi: https://doi.org/10.4067/S0717-66432012000100005
Scholz, F. G., Bucci, S. J., Arias, N., Meinzer, F. C., & Goldstein, G. (2012). Osmotic and elastic adjustments in cold desert shrubs differing in rooting depth: coping with drought and subzero temperatures. Oecologia, 170(4), 885–897. doi: https://doi.org/10.1007/s00442-012-2368-y
Silva, L. C. R., Gómez-Guerrero, A., Doane, T. A., & Horwath, W. R. (2015). Isotopic and nutritional evidence for species- and site-specific responses to N deposition and elevated CO2 in temperate forests. Journal of Geophysical Research: Biogeosciences, 120(6), 1110–1123.doi: https://doi.org/10.1002/2014JG002865
Speer, J. H. (2010). Fundamentals of tree-ring research. USA: Univ. of Arizona Press.
Topaloğlu, E., Ay, N., Altun, L., & Serdar, B. (2016). Effect of altitude and aspect on various wood properties of oriental beech (Fagus orientalis Lipsky) wood. Turkish Journal of Agriculture and Forestry, 40(3), 397–406. doi: https://doi.org/10.3906/tar-1508-95
Villanueva-Diaz, J., Stahle, D. W., Luckman, B. H., CeranoParedes, J., Therrell, M. D., Cleaveland, M. K., & Cornejo-Oviedo, E. (2007). Winter-spring precipitation reconstructions from tree rings for northeast Mexico. Climatic Change, 83(1–2), 117–131. doi: https://doi.org/10.1007/s10584-006-9144-0
Wang, T., Hamann, A., Spittlehouse, D., & Carroll, C. (2016). Locally downscaled and spatially customizable climate data for historical and future periods for North America. PLoS ONE, 11(6), e0156720. doi: https://doi.org/10.1371/journal.pone.0156720
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Derechos de autor 2022 Revista Chapingo Serie Ciencias Forestales y del Ambiente