Resumen
Introducción: Pinus chiapensis (Martínez) Andresen carece en muchas regiones de modelos de índice de sitio (IS) para clasificar la productividad maderable.
Objetivo: Desarrollar una ecuación dinámica de IS, mediante el enfoque de diferencia algebraica generalizada (DAG), para describir el patrón de crecimiento en altura dominante y clasificar la productividad de rodales naturales de P. chiapensis en Puebla y Veracruz, México.
Materiales y métodos: Cuatro modelos teóricos de crecimiento se utilizaron para derivar seis ecuaciones en DAG, ajustadas a observaciones de altura dominante-edad procedentes de análisis troncales de 31 árboles. El ajuste se realizó con el método de variables Dummy que es invariante de la edad base; se corrigió la autocorrelación y la heterocedasticidad.
Resultados y discusión: La evaluación cuantitativa, el análisis gráfico de los residuales y de las tendencias de crecimiento de las ecuaciones permitió la selección de una ecuación derivada del modelo de Levakovic II con capacidad predictiva mayor. Con esta ecuación y una edad base de 50 años se construyeron curvas de IS polimórficas con asíntotas variables para clasificar la productividad en baja, media y alta, correspondientes a IS de 25, 32 y 39 m, respectivamente. El incremento medio anual máximo para el IS de 32 m fue de 1.07 m∙año-1 y ocurrió a los 11.08 años. La ecuación exhibió mejor desempeño con respecto a una ecuación polimórfica previamente reportada.
Conclusiones: Se recomienda usar la ecuación desarrollada para predecir el crecimiento en altura dominante e IS de rodales de P. chiapensis en Puebla y Veracruz, México
Citas
Akbas, U., & Senyurt, M. (2018). Site quality estimations based on the generalized algebraic difference approach: a case study in Çankiri forests. Revista Árvore, 42(3), e420311. doi: https://doi.org/10.1590/1806-90882018000300011
Burkhart, H. E., & Tomé, M. (2012). Modeling forest trees and stands. New York, NY, USA: Springer-Verlag. Calegario, N., Daniels, R. F., Maestri, R., & Neiva, R. (2005). Modeling dominant height growth based on nonlinear mixed-effects model: a clonal Eucalyptus plantation case study. Forest Ecology and Management, 204(1), 11–21. doi: https://doi.org/10.1016/j.foreco.2004.07.051
Cancino, J., Acuña, E., & Espinosa, M. (2013). Combining ring counting and ring width for estimating height in stem analysis. Forest Science, 59(6), 599−609. doi: https://doi.org/10.5849/forsci.12-028
Chávez-Pascual, E. Y., Rodríguez-Ortiz, G., CarrilloRodríguez, J. C., Enríquez-del Valle, J. R., ChávezServia, J. L., & Campos-Ángeles, G. V. (2013). Factores de expansión de biomasa aérea para Pinus chiapensis (Mart.) Andresen. Revista Mexicana de Ciencias Agrícolas, 6, 1273−1284. Retrieved from http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-09342013001000018
Del Castillo, R. F., Trujillo, A. S., & Saénz-Romero, C. (2009). Pinus chiapensis, a keystone species: Genetics, ecology, and conservation. Forest Ecology and Management, 257(11), 2201−2208. doi: https://doi.org/10.1016/j.foreco.2009.03.004
Ercanli, İ., Kahriman, A., & Yavuz, H. (2014). Dynamic baseage invariant site index models based on generalized algebraic difference approach for mixed Scots pine (Pinus sylvestris L.) and Oriental beech (Fagus orientalisLipsky) stands. Turkish Journal of Agriculture and Forestry, 38(1), 134−147. doi: https://doi.org/10.3906/tar-1212-67
Fierros-Mateo, R., De los Santos-Posadas, H. M., FierrosGonzález, M. A., & Cruz-Cobos, F. (2017). Crecimiento y rendimiento maderable en plantaciones de Pinus chiapensis (Martínez) Andresen. Agrociencia, 51(2), 201−214. Retrieved from https://agrociencia-colpos.mx/index.php/agrociencia/article/view/1287/1287
Guerra-Hernández, J., Arellano-Pérez, S., González-Ferreiro, E., Pascual, A., Altelarrea, V. S., Ruiz-González, A. D., & Álvarez-González, J. G. (2021). Developing a site index model for P. pinaster stands in NW Spain by combining bi-temporal ALS data and environmental data. Forest Ecology and Management, 481, 118690. doi: https://doi.org/10.1016/j.foreco.2020.118690
Hernández-Cuevas, M., Santiago-García, W., De los SantosPosadas, H. M., Martínez-Antúnez, P., & RuizAquino, F. (2018). Modelos de crecimiento en altura dominante e índices de sitio para Pinus ayacahuite Ehren. Agrociencia, 52(3), 437−453. Retrieved from https://agrociencia-colpos.mx/index.php/agrociencia/article/view/1680/1680
Özçelik, R., Cao, V. Q., Gómez-García, E., Crecente-Campo, F., & Eler, Ü. (2019). Modeling dominant height growth of cedar (Cedrus libani A. Rich) stands in Turkey. Forest Science, 65(6), 725−733. doi: https://doi.org/10.1093/forsci/fxz038
Panik, M. J. (2014). Growth curve modeling: Theory and applications. Hoboken, NJ, USA: Wiley.
Perry, J. P. (2009). The pines of Mexico and Central America. Portland, OR, USA: Timber Press.
Pretzsch, H. (2009). Forest dynamics, growth and yield. From measurement to model. Berlin, Germany: Springer.
Pretzsch, H., Dauber, E., & Biber, P. (2013). Species-specific and ontogeny-related stem allometry of european forest trees: Evidence from extensive stem analyses. Forest Science, 59(3), 290−302. doi: https://doi.org/10.5849/forsci.11-102
Pyo, J. (2017). Developing the site index equation using a generalized algebraic difference approach for Pinus densiflora in central region, Korea. Forest Science and Technology, 13(2), 87–91. doi: https://doi.org/10.1080/21580103.2017.1308889
Quiñonez-Barraza, G., De los Santos-Posadas, H. M., CruzCobos, F., Velázquez-Martínez, A., Ángeles-Pérez, G., & Ramírez-Valverde, G. (2015). Site index with complex polymorphism of forest stands in Durango, Mexico. Agrociencia, 49(4), 439–454. Retrieved from http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-31952015000400007
Quiñonez-Barraza, G., García-Espinoza, G. G., & Aguirre-Calderón, O. A. (2018). How to correct the heteroscedasticity and autocorrelation of residuals in taper and height growth models? Revista Mexicana de Ciencias Forestales, 9(49), 28–59. doi: https://doi.org/10.29298/rmcf.v9i49.151
Rodríguez-Acosta, M., & Arteaga-Martínez, B. (2005). Índice de sitio para Pinus chiapensis (Martínez) Andresen, en los estados de Veracruz y Puebla, México. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 11(1), 39−44. Retrieved from https://revistas.chapingo.mx/forestales/revista/articulos/viewer.html?file=rchscfaXI428.pdf
Ruiz-Jiménez, C. A., Téllez-Valdés, O., & Luna-Vega, I. (2012). Clasificación de los bosques mesófilos de montaña de México: afinidades de la flora. Revista Mexicana de Biodiversidad, 83, 1110−1144. doi: https://doi.org/10.7550/rmb.29383
Ryan, T. P. (2009). Modern regression methods. New York, USA: Wiley.
Sánchez, V. N. M., & Del Castillo, S. R. F. (2001). Calidad de estación para Pinus chiapensis (Mart.) Andresen en El Rincón, Oaxaca, México. Foresta Veracruzana, 3(2), 9−12. Retrieved from https://www.redalyc.org/articulo.oa?id=49703202
Seki, M., & Sakici, O. E. (2017). Dominant height growth and dynamic site index models for Crimean pine in Kastamonu-Taşköprü region of Turkey. Canadian Journal of Forest Research, 47(11), 1441−1449. doi: https://doi.org/10.1139/cjfr-2017-0131
Sghaier, T., Palahi, M., Garchi, S., Bonet, J. A., Ammari, Y., & Pique, M. (2012). Modeling dominant height growth in planted Pinus pinea stands in Northwest of Tunisia. International Journal of Forestry Research, ID 902381. doi: https://doi.org/10.1155/2012/902381
Sharma, R. P., Brunner, A., Eid, T., & Øyen, B. H. (2011). Modelling dominant height growth from national forest inventory individual tree data with short time series and large age errors. Forest Ecology and Management, 262(12), 2162–2175. doi: https://doi.org/10.1016/j.foreco.2011.07.037
Socha, J., Tyminska-Czabańska, L., Grabska, E., & Orzel, S. (2020). Site index models for main forest-forming tree species in Poland. Forests, 11, 301. doi: https://doi.org/10.3390/f11030301
Sprengel, L., Spiecker, H., & Wu, S. (2022). Two subject specific modelling approaches to construct base-age invariant polymorphic site index curves with varying asymptotes. Silva Fennica, 56(1), 10544. doi: https://doi.org/10.14214/sf.10544
Statistical Analysis System (SAS Institute Inc.) (2011). SAS/STAT User’s Guide, version 9.3. Cary, NC, USA: Author.Subedi, N., & Sharma, M. (2010). Evaluating height-age determination methods for Jack pine and black spruce plantations using stem analysis data. Northern Journal of Applied Forestry, 27(2), 50−55. doi: https://doi.org/10.1093/
njaf/27.2.50
Tamarit-Urias, J. C., De los Santos-Posadas, H. M., Aldrete, A., Valdez-Lazalde, J. R., Ramírez-Maldonado, H., & Guerra-De la Cruz, V. (2014). Ecuaciones dinámicas de índice de sitio para Tectona grandis en Campeche, México. Agrociencia, 48(2), 225−238. Retrieved from https://www.agrociencia-colpos.mx/index.php/agrociencia/article/view/1077/1077
Tewari, V. P., & Singh, B. (2018). Total wood volume equation for Tectona grandis Linn F. stands in Gujarat, India. Journal of Forest and Environmental Science, 34(4), 313−320. doi: https://doi.org/10.7747/JFES.2018.34.4.313
Trim, K. R., Coble, D. W., Weng, Y., Stovall, J. P., & Hung, I. K. (2020). A new site index model for intensively managed loblolly pine (Pinus taeda) plantations in the west Gulf Coastal Plain. Forest Science, 66(1), 2−13. doi: https://doi.org/10.1093/forsci/fxz050
Vargas-Larreta, B., Corral-Rivas, J. J., Aguirre-Calderón, O. A., López-Martínez, J. O., de los Santos-Posadas, H. M., Zamudio-Sánchez, F. J., . . . Aguirre-Calderón, C. G. (2017). SiBiFor: Forest Biometric System for forest management in Mexico. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 23(3), 437–455. doi: https://doi.org/10.5154/r.rchscfa.2017.06.040
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Derechos de autor 2022 Revista Chapingo Serie Ciencias Forestales y del Ambiente