Revista Chapingo Serie Ciencias Forestales y del Ambiente
Tolerancia de Aspergillus flavus y Aspergillus nidulans a metales tóxicos
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF

Palabras clave

Desierto de Sonora
contaminación del suelo
toxicidad por metales
minería
hongos filamentosos

Cómo citar

Villalba-Villalba, A. G., Chan-Chan, L. H., & Maldonado-Arce, A. (2023). Tolerancia de Aspergillus flavus y Aspergillus nidulans a metales tóxicos. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 28(2), 189–205. https://doi.org/10.5154/r.rchscfa.2021.02.009

Resumen

Introducción: Los metales se encuentran en forma natural en el medio ambiente, pero el uso indiscriminado de estos ha causado problemas graves de contaminación.
Objetivo: Dos especies de Aspergillus se aislaron e identificaron a partir de jales mineros; posteriormente, el índice de tolerancia de los hongos se evaluó a concentraciones de varios metales.
Materiales y métodos: Los hongos se aislaron de jales mineros ubicados en el desierto de Sonora. El crecimiento fúngico se evaluó en presencia de los metales Cr6+, Pb2+, Zn2+, Ag+ , Cd2+, Cu2+ y Hg2+ mediante el índice de tolerancia y concentración mínima inhibitoria (CMI).
Resultados y discusión: A. flavus tuvo índices de tolerancia muy elevados a Cr6+, Pb2+ y Zn2+ en todas las concentraciones evaluadas (>20 mM); también presentó un índice alto de tolerancia a los demás metales en concentraciones más bajas. La CMI para este hongo en presencia de Cd2+, Hg2+ y Ag+ se registró entre 5 y 10 mM. El crecimiento de A. nidulans no se inhibió con 20 mM de Cr6+. La CMI de A. nidulans en presencia de Hg2+, Ag+ y Cu2+ estuvo en el rango de 1 a 5 mM; con Cd2+, Pb2+ y Zn2+ se encontró entre 15 y 20 mM. Las curvas dosis[1]respuesta mostraron una forma sigmoidal característica. Con Ag+ y Cu2+, A. flavus tuvo un comportamiento de hormesis.
Conclusión: Debido a la alta tolerancia de A. nidulans y A. flavus se sugiere su uso potencial para la eliminación de metales.

https://doi.org/10.5154/r.rchscfa.2021.02.009
PDF

Citas

Abdullah, S. K., & Al-Bader, S. M. (1990). On the thermophilic and thermotolerant mycoflora of Iraqi soils. Sydowia, 42, 1–7. Retrieved from https://www.zobodat.at/pdf/Sydowia_42_0001-0007.pdf

Agathokleous, E., & Calabrese, E. (2019). Hormesis: The dose response for the 21st century: The future has arrived. Toxicology, 425, 152249. doi: 10.1016/j.tox.2019.152249

Agency for Toxic Substances and Disease Registry (ATSDR). (2019). Priority list of hazardous substances. Retrieved March 17, 2020, from http://www.atsdr. cdc.gov/SPL/index.html/

Ahluwalia, S. S., & Goyal, D. (2007). Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresource Technology, 98(12), 2243–2257. doi: https://doi.org/10.12691/env-2-3-1

Babu, A. G., Shim, J., Bang, K. S., Shea, P. J., & Oh, B. T. (2014). Trichoderma virens PDR-28: a heavy metal-tolerant and plant growth-promoting fungus for remediation and bioenergy crop production on mine tailing soil. Journal of Environmental Management, 132, 129–134. doi: https://doi.org/10.1016/j.jenvman.2013.10.009

Balsalobre, L., De Silóniz, M. I., Valderrama, M. J., Benito, T., Larrea, M. T., & Peinado, J. M. (2003). Occurrence of yeasts in municipal wastes and their behaviour in presence of cadmium, copper and zinc. Journal of Basic Microbiology, 43(3), 185–193. doi: https://doi.org/10.1002/jobm.200390021

Bennet, J. W., Wunch, K. G., Faison, B. D. (2002). Use of fungi biodegradation. In J. Hurst (Ed.), Manual of environmental microbiology (pp. 960–971). Washington: ASM.

BLAST. (2020). Basic Local Alignment Search Tool. Retrieved August 28, 2020, from https://blast.ncbi.nlm.nih.gov/Blast.cgi/

Calabrese, E. J., Bachmann, K. A., Bailer, A. J., Bolger, P. M., Borak, J., Cai, L., …Clarkson, T. W. (2007). Biological stress response terminology: Integrating the concepts of adaptive response and preconditioning stress within a hormetic dose–response framework. Toxicology and Applied Pharmacology, 222(1), 122–128. doi: https://doi.org/10.1016/j.taap.2007.02.015

Calabrese, E. J., & Blain, R. B. (2009). Hormesis and plant biology. Environmental Pollution, 157(1), 42–48. doi: https://doi.org/10.1016/j.envpol.2008.07.028

Castro-Silva, M. A., Lima, A. O. S., Gerchenski, A. V., Jaques, D. B., Rodrigues, A. L., Souza, P. L., & Rörig, L. R. (2003). Heavy metal resistance of microorganisms isolated from coal mining environments of Santa Catarina. Brazilian Journal of Microbiology, 34(1), 45–47. doi: https://doi.org/10.1590/S1517-83822003000500015

Chakraborty, S., Mukherjee, A., & Das, T. K. (2013). Biochemical characterization of a lead-tolerant strain of Aspergillus foetidus: An implication of bioremediation of lead from liquid media. International Biodeterioration & Biodegradation, 84, 134–142. doi: https://doi.org/10.1016/j.ibiod.2012.05.031

Chen, A. J., Frisrad, J. C., Sun, B. D., Vargas, J., Kocsubé, S., Dijksterhuis, J., … Samson, R. A. (2016). Aspergillussection Nidulantes (formely Emericella): polyphasic taxonomy, chemistry and biology. Studies in Mycology,84, 1–118. doi: https://doi.org/10.1016/j.simyco.2016.10.001

Cordero, R. J. B., & Casadevall, A. (2017). Functions of fungal melanin beyond virulence. Fungal Biology Reviews, 31(2), 99–112. doi: https://doi.org/10.1016/j.fbr.2016.12.003

Danesh, Y. R., Tajbakhsh, M., Goltapeh, E. M., & Varma, A. (2013). Mycoremediation of heavy metals. In E. M. Goltapeh, Y. R. Danessh, & A. Varma (Eds.), Fungi as bioremediators (pp. 245–267). Berlin, Germany: Springer-Verlag.

Dhawale, S. S., Lane, A. C., & Dhawale, W. (1996). Effects of mercury on the white rot fungus Phanerochaete chrysosporium. Bulletin of Environmental Contamination of Toxicology, 56(5), 825. doi: https://doi.org/10.1007/s001289900120

Dixit, R., Malaviya, D., Pandiyan, K., Singh, U., Sahu, A., Shukla, R., …Lade, H. (2015). Bioremediation of heavy metals from soil and aquatic environment: An overview of principles and criteria of fundamental processes. Sustainability, 7(2), 2189–2212. doi: https://doi.org/10.3390/su7022189

Ezzouhri, L., Castro, E., Moya, M., Espinola, F., & Lairini, K. (2009). Heavy metal tolerance of filamentous fungi isolated from polluted sites in Tangier, Morocco. African Journal of Microbiology Research, 3(2), 35–48. Retrieved from https://academicjournals.org/article/article1380177143_Ezzouhri%20et%20al.pdf

Fan, T., Liu, Y., Feng, B., Zeng, G., Yang, C., Zhou, M., …Wang, X. (2008). Biosorption of cadmium (II), zinc (II) and lead (II) by Penicillium simplicissimum: Isotherms, kinetics and thermodynamics. Journal of Hazardous Materials, 160(2-3), 655–661. doi: https://doi.org/10.1016/j.jhazmat.2008.03.038

Gadd, G. M. (1993). Interactions of fungi with toxic metals. New Phytology, 124(1), 25–60. doi: https://doi.org/10.1111/j.1469-8137.1993.tb03796.x

Iheanacho, H. E., Njobeh, P. B., Dutton, F. M., Steenkamp, P. A., Steenkamp, L., Mthombeni, J. Q., …Makun, A. H. (2014). Morphological and molecular identification of filamentous Aspergillus flavus and A. parasiticus isolated from compound feeds in South Africa. Food Microbiology, 44, 180–184. doi: https://doi.org/10.1016/j.fm.2014.05.019

Jiang, S., Wang, W., Xue, X., Cao, C., & Zhang, Y. (2016). Fungal diversity in major oil-shale mines in China. Journal of Environmental Science, 41, 81–89. doi: https://doi.org/10.1016/j.jes.2015.04.032

Joo, J. H., & Hussein, K. A. (2012). Heavy metal tolerance of fungi isolated from contaminated soil. Korean Journal of Soil Science and Fertilizer, 45(4), 565–571. doi: https://doi.org/10.7745/KJSSF.2012.45.4.565

Kermasha, S., Pellerin, F., Rovel, B., Goetghebeur, M., & Metche, M. (1993). Purification and characterization of copper-metallothioneins from Aspergillus niger. Bioscience, Biotechnology and Biochemistry, 57(9), 1420–1423. doi: https://doi.org/10.1271/bbb.57.1420

Kurniati, E., Arfarita, N., & Imai, T. (2014). Potential use of Aspergillus flavus strain KRP1 in utilization of mercury contaminant. Procedia Environmental Science, 20, 254– 260. doi: https://doi.org/10.1016/j.proenv.2014.03.032

Larone, D. (2011). Medically important fungi: A guide to identification. Washington, USA: ASM Press.

Levinskaite, L. (2001). Effect of heavy metals on the individual development of two fungi from the genusPenicillium. Biologija, 1, 25–30. Retrieved from http://www.elibrary.lt/resursai/LMA/Biologija/BIO-25.pdf

Malofe, T. C., Solhaug, K. A., Minibayera, F. V., & Beckett, R. P. (2019). Ocurrence and possible roles of melanic pigments in lichenized ascomycetes. Fungal Biology Reviews, 33(3-4), 159–165. doi: https://doi.org/10.1016/j.fbr.2018.10.002

Massaccesi, G., Romero, M. C., Cazau, M. C. & Bucsinszky, A. M. (2002). Cadmium removal capacities of filamentous soil fungi isolated from industrially polluted sediments, in La Plata (Argentina). World Journal of Microbiology and Biotechnology, 18, 817–820. doi: https://doi.org/10.1023/A:1021282718440

Mohammadian, E., Ahari, A. B., Arzanlou, M., Oustan, S., & Khazaei, S. H. (2017). Tolerance to heavy metals in filamentous fungi isolated from contaminated mining soils in the Zanjan Province, Iran. Chemosphere, 185, 290–296. doi: https://doi.org/10.1016/j.chemosphere.2017.07.022

Mouchacca, J. (2005). Mycobiota of the arid Middle East: check-list of novel fungal taxa introduced from 1940 to 2000 and major recent biodiversity titles. Journal of Arid Environmental, 60(3), 359–387. doi: https://doi.org/10.1016/j.jaridenv.2004.06.007

Na, J., Yang, H., Bae, S., & Lim, K. M. (2014). Analysis of statistical methods currently used in toxicology journals. Toxicological Research, 30(3), 185. doi: https://doi.org/10.5487/TR.2014.30.3.185

Nordberg, G. F., Fowler, B. A., & Nordberg, M. (2015). Toxicology of metals: overview, definitions, concepts, and trends. In G. F. Nordberg, B. A. Fowler, & M. Nordberg (Eds.), Handbook on the toxicology of metals (pp. 1–12). USA: Academic Press-Elsevier. doi: https://doi.org/10.1016/B978-0-444-59453-2.00001-9

Nosanchuk, J. D., & Casadevall, A. (2003). The contribution of melanin to microbial pathogenesis. Cellular Microbiology, 5(4), 203–223. doi: https://doi.org/10.1046/j.1462-5814.2003.00268.x

Oladipo, O. G., Awotoye, O. O., Olayinka, A., Bezuidenhout, C. C., & Maboeta, M. S. (2018). Heavy metal tolerance traits of filamentous fungi isolated from gold and gemstone mining sites. Brazilian Journal of Microbiology, 49(1), 29–37. doi: https://doi.org/10.1016/j.bjm.2017.06.003

Oliveira, L. G., Cavalcanti, M. A. Q., Fernandes, M. J. S., & Lima, D. M. (2013). Diversity of filamentous fungi isolated from the soil in the semiarid area, Pernambuco, Brazil. Journal of Arid Environments, 95, 49–54. doi: https://doi.org/10.1016/j.jaridenv.2013.03.007

Oliveira, T. A., Koakoski, G., da Motta, A. C., Piato, A. L., Barreto, R. E., Volpato, G. L., & Barcellos, L. J. G. (2014). Death-associated odors induce stress in zebrafish. Hormones and Behavior, 65(4), 340–344. doi: https://doi.org/10.1016/j.yhbeh.2014.02.009

OriginLab Corporation (2008). OriginLab software 8.0. Scientific data analysis and graphing software. Northampton, Massachusetts, USA: Author. Retrieved from http://www.originlab.com

Kurniati, E., Arfarita, N., & Imai, T. (2014). Potential use of Aspergillus flavus strain KRP1 in utilization of mercury contaminant. Procedia Environmental Science, 20, 254– 260. doi: https://doi.org/10.1016/j.proenv.2014.03.032

Ranzoni, F. V. (1968). Fungi isolated in culture from soils of the Sonoran desert. Mycologia, 60(2), 356–371. doi: https://doi.org/10.2307/3757166

Rose, P. K., & Devi, R. (2018). Heavy metal tolerance and adaptability assessment of indigenous filamentous fungi isolated from industrial wastewater and sludge samples. Beni-Suef University Journal of Basic and Applied Sciences, 7(4), 688–694. doi: https://doi.org/10.1016/j.bjbas.2018.08.001

Ruxton, G. D., & Beauchamp, G. (2008). Time for some a priori thinking about post hoc testing. Behavioral Ecology, 19(3), 690–693. doi: https://doi.org/10.1093/beheco/arn020

Sácký, J., Leonhardt, T., Borovička, J., Gryndler, M., Briksí, A., & Kotrba, P. (2014). Intracellular sequestration of zinc, cadmium and silver in Hebeloma mesophaeumand characterization of its metallothionein genes. Fungal Genetics and Biology, 67, 3–14. doi: https://doi.org/10.1016/j.fgb.2014.03.003

Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT). (2017). Sitios potencialmente contaminados y sitios contaminados registrados en el SISCO como pasivos ambientales. Retrieved February 12, 2020, from http://dgeiawf.semarnat.gob.mx:8080/ibi_apps/WFServlet?IBIF_ex=D3_SITIOS03_01&IBIC_user=dgeia_mce&IBIC_pass=dgeia_mce&NOMBREENTIDAD=*

Servicio Meteorológico Nacional (SMN). (2020). Reporte del clima en México. Retrieved from https://smn.conagua.gob.mx/tools/DATA/Climatolog%C3%ADa/Diagn%C3%B3stico%20Atmosf%C3%A9rico/Reporte%20del%20Clima%20en%20M%C3%A9xico/Anual2020.pdf

Sharma, B., Dangi, A. K., & Shukla, P. (2018). Contemporary enzyme based technologies for bioremediation: a review. Journal of Environmental Management, 210, 10–22. doi: https://doi.org/10.1016/j.jenvman.2017.12.075

Srivastava, S., & Thakur, I. S. (2006). Biosorption potency of Aspergillus niger for removal of chromium (VI). Current Microbiology, 53(3), 232–237. doi: https://doi.org/10.1007/s00284-006-0103-9

Thippeswamy, B., Shivakumar, C., & Krishnappa, M. (2014). Studies on heavy metals detoxification biomarkers in fungal consortia. Caribbean Journal of Science and Technology, 2, 496–502.

United States Environmental Protection Agency (USEPA). (1991). Soil screening guidance: User’s guide. Retrieved from https://rais.ornl.gov/documents/SSG_nonrad_user.pdf

Valix, M., Tang, J. Y., & Malik, R. (2001). Heavy metal tolerance of fungi. Minerals Engineering, 14(5), 499–505. doi: https://doi.org/10.1016/S0892-6875(01)00037-1

White, T. J., Burns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Snisky, & T. J. White (Eds.), PCR protocols: A guide to methods and applications (pp. 315–322). San Diego, USA: Academic Press. doi: https://doi.org/10.1016/b978-0-12-372180-8.50042-1

White, L. P. (1958). Melanina naturally occurring cation exchange material. Nature, 182, 1427–1428. doi: https://doi.org/10.1038/1821427a0

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.

Derechos de autor 2022 Revista Chapingo Serie Ciencias Forestales y del Ambiente