Revista Chapingo Serie Ciencias Forestales y del Ambiente
Valor nutricional y degradación térmica de compuestos bioactivos en hongos comestibles silvestres
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF

Palabras clave

actarius indigo
Ramaria flava
Hypomyces lactifluorum
fuente de nutracéuticos
cinética de degradación

Cómo citar

Espejel-Sánchez, K. I., Espinosa-Solares, T., Reyes-Trejo, B., Hernández-Rodríguez, G., Cunill-Flores, J. M., & Guerra-Ramírez, D. (2021). Valor nutricional y degradación térmica de compuestos bioactivos en hongos comestibles silvestres. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 27(3), 337–354. https://doi.org/10.5154/r.rchscfa.2020.12.078

Resumen

Introducción: El potencial nutricional de los hongos comestibles silvestres y la pérdida de sus propiedades nutracéuticas durante la cocción han sido poco explorados.
Objetivo: Evaluar el contenido nutricional y el efecto del tratamiento térmico sobre las propiedades nutracéuticas en las especies silvestres Lactarius indigo (Schwein.) Fr. (hongo azul), Ramaria flava(Schaeff.) Quél. (escobetilla) e Hypomyces lactifluorum (Schwein.) Tul. & C. Tul. (hongo enchilado), recolectadas en bosque templado de pino y encino de la Sierra Norte de Puebla.
Materiales y métodos: Los hongos se recolectaron en compañía de “hongueras tradicionales”. La composición proximal se cuantificó de acuerdo con los métodos de la AOAC. El efecto del tratamiento térmico se evaluó a 50 y 92 °C en intervalos de 10 a 60 minutos. El contenido fenólico total se determinó por el método Folin-Ciocalteu y la capacidad antioxidante mediante los ensayos ABTS y FRAP.
Resultados y discusión:R. flavay L. indigo tuvieron los porcentajes más altos de proteína (24.02 %) y fibra cruda (14.64 %) en base seca, respectivamente. El hongo R. flava presentó el contenido fenólico más alto (4.40 mg equivalentes de ácido gálico por gramo de base seca) y la mayor capacidad antioxidante (23.65 μmol equivalentes de trolox por gramo de base seca). La cinética de degradación de los compuestos fue de primer orden; H. lactifluorum y R. flava tuvieron la mayor pérdida de fenoles y antioxidantes, respectivamente.
Conclusión: Los hongos estudiados mostraron alto valor nutricional y conservaron más de 50 % de sus propiedades antioxidantes después del procesamiento térmico.

https://doi.org/10.5154/r.rchscfa.2020.12.078
PDF

Citas

Agrahar-Murugkar, D., & Subbulakshmi, G. (2005). Nutritional value of edible wild mushrooms collected from the Khasi hills of Meghalaya. Food Chemistry, 89(4), 599–603. doi: https://doi.org/10.1016/j.foodchem.2004.03.042

Alvarez-Parrilla, E., de la Rosa, L. A., Martínez, N. R., & González, G. A. A. (2007). Total phenols and antioxidant activity of commercial and wild mushrooms from Chihuahua, México. Ciencia y Tecnología Alimentaria, 5(5), 329–334. doi: https://doi.org/10.1080/11358120709487708

AOAC International. (2005). Official methods of analysis of AOAC(18th ed.). Arlington, TX, USA: Author.

Aquino-Bolaños, E. N., Urrutia-Hernández, T. A., López Del Castillo-Lozano, M., Chavéz-Servia, J. L., & Verdalet-Guzmán, I. (2013). Physicochemical parameters and antioxidant compounds in edible squash (Cucurbita pepo) f lower stored under controlled atmospheres. Journal of Food Quality, 36(5), 302–308. doi: https://doi.org/10.1111/jfq.12053

Barros, L., Ferreira, M.-J., Queirós, B., Ferreira, I. C. F. R., & Baptista, P. (2007). Total phenols, ascorbic acid, β-carotene and lycopene in Portuguese wild edible mushrooms and their antioxidant activities. Food Chemistry, 103(2), 413–419. doi: https://doi.org/10.1016/j.foodchem.2006.07.038

Barros, L., Venturini, B. A., Baptista, P., Estevinho, L. M., & Ferreira, I. C. (2008). Chemical composition and biological properties of portuguese wild mushrooms: a comprehensive study. Journal of Agricultural and Food Chemistry, 56(10), 3856 –3862. doi: https://doi.org/10.1021/jf 8003114

Benzie, I. F. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Analytical Biochemistry, 239(1), 70–76. doi: https://doi.org/10.1006/abio.1996.0292

Blessington, T., Nzaramba, M. N., Scheuring, D. C., Hale, A. L., Reddivari, L., & Miller, J. C. Jr. (2010). Cooking methods and storage treatments of potato: effects of carotenoids, antioxidant activity and phenolics. American Journal of Potato Research, 87, 479e491. doi: https://doi.org/10.1007/s12230-010-9150-7

Camargo, L., Xavier, V., Alves, J., Flach, A., & Ruffo, S. (2015). Bioactive compounds and antioxidant activity in pre-harvest camu-camu [Myrciaria dubia ( H. B. K.) Mc Vaugh] fruits. Scientia Horticulturae Journal, 186, 223–229. doi: https://doi.org/10.1016/j.scienta.2015.02.031

Contreras, C. L. E. U., Vázquez, G. A., & Ruan-Soto, F. (2018). Etnomicología y venta de hongos en un mercado del Noroeste del estado de Puebla, México. Scientia Fungorum, 47, 47–55. Retrieved from http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2594-13212018000100047&lng=es&tlng=es

Chacón, S., Guzmán, G., Montoya-Bello, L., & Bandala-Muñoz, V. M.

(1995). Guía ilustrada de los hongos del Jardín Botánico Francisco Javier Clavijero de Xalapa, Veracruz y áreas circunvecinas. Xalapa, Veracruz, México: Instituto de Ecología, A. C.

Cheung, P. C. K. (2010). The nutritional and health benefits of mushrooms. Nutrition Bulletin, 35(4), 292–299. doi: https://doi.org/10.1111/j.1467-3010.2010.01859.x

Cheung, L. M., Cheung, P. C. K., & Ooi, V. E. C. (2003). Antioxidant activity and total phenolics of edible mushroom extracts. Food Chemistry, 81(2), 249–255. doi: https://doi.org/10.1016/S0308-8146(02)00419-3

de Faria, A. F., de Rosso, V. V., & Mercadante, A. Z. (2009). Carotenoid composition of jackfruit (Artocarpus heterophyllus), determined by HPLC-PDA-MS/MS. Plant Foods for Human Nutrition, 64(2), 108–115. doi: https://doi.org/10.1007/s11130-009-0111-6

Estrada-Martínez, E., Guzmán, G., Cibrián, T. D., & Ortega, P. R. (2009). Contribución al conocimiento etnomicológico de los hongos comestibles silvestres de mercados regionales y comunidades de la Sierra Nevada (México). Revista Interciencia, 34(2), 25–33. Retrieved from http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0378-18442009000100006&lng=es&tlng=es

Faller, A., & Fialho, E. (2009). The antioxidant capacity and polyphenol content of organic and conventional retail vegetables after domestic cooking. Food Research International, 42(1), 210–215. doi: https://doi.org/10.1016/j.foodres.2008.10.009

Ferreira, I., Barros, L., & Abreu, R. (2009). Antioxidants in wild mushrooms. Current Medicinal Chemistry, 16(12), 1543–1560. doi: https://doi.org/10.2174/092986709787909587

Garibay-Orijel, R., Ramírez-Terrazo, A., & Ordaz-Velázquez, M. (2012). Women care about local knowledge, experiences from ethnomycology. Journal of Ethnobiology and Ethnomedicine, 8(1), 25. doi: https://doi.org/10.1186/1746-4269-8-25

Garibay-Orijel, R., & Ruan-Soto, F. (2014). Listado de los hongos silvestres consumidos como alimento tradicional en México. In A. Moreno-Fuentes, & R. Garibay-Orijel (Eds.), La etnomicología en México, estado del arte. México: CONACYT-UAEH-UNAM. Retrieved from http://www.scielo.org.mx/scielo.php?script=sci_nlinks&pid=S2594-1321201800010004700019&lng=en

Guzmán, G. (1977). Identificación de los hongos comestibles, venenosos

y alucinantes y destructores de la madera. Mexico: Ed. Limusa.

Guzmán, G. (2008). Diversity and use of traditional Mexican medicinal fungi. A review. International Journal of Medicinal Mushrooms, 10(3), 209–217. Retrieved from https://inecol.repositorioinstitucional.mx/jspui/bitstream/1005/120/1/8311_2008-10203.pdf

Haro-Luna, M. X., Ruan-Soto, F., & Guzmán-Dávalos, L. (2019). Traditional knowledge, uses, and perceptions of mushrooms among the Wixaritari and mestizos of Villa Guerrero, Jalisco, Mexico. IMA Fungus, 10(1), 16. doi: https://doi.org/10.1186/s43008-019-0014-6

Hernández-Rodríguez, G., Espinosa-Solares, T., Hernández-Eugenio, G., Villa-García, M., Reyes-Trejo, B., & Guerra-Ramírez, D. (2016). Influence of polar solutions on the extraction of phenolic compounds from capulin fruits (Prunus serotina). Journal of the Mexican Chemical Society, 60(2), 73–78. Retrieved from http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1870-249X2016000200073&lng=es&tlng=en

Index Fungorum (2021). Retrieved from http://www.indexfungorum.org/Names/Names.asp

Jasso-Arriaga, X., Martínez-Campos, Á. R., & Dorantes-Coronado, E. J. (2019). Más allá de la comercialización de hongos comestibles silvestres en la comunidad de San Antonio Acahualco, México. AGROProductividad, 12(5), 9–17. doi: https://doi.org/10.32854/agrop.v0i0.1396

Jaworska, G., Pogoń, K., Bernaś, E., & Duda-Chodak, A. (2015). Nutraceuticals and antioxidant activity of prepared for consumption commercial mushrooms Agaricus bisporus and Pleurotus ostreatus. Journal of Food Quality, 38(2), 111–122. doi: https://doi.org/10.1111/jfq.12132

Kalogeropoulos, N., Grigorakis, D., Mylona, A., Falirea, A., & Andrikopoulos, N. K. (2006). Dietary evaluation of vegetables pan-fried in virgin olive oil following the greek traditional culinary practice. Ecology of Food and Nutrition, 45(2), 105–123. doi: https://doi.org/10.1080/03670240500530642

Kalač, P. (2013). A review of chemical composition and nutritional value of wild-growing and cultivated mushrooms. Journal of the Science of Food and Agriculture, 93(2), 209–218. doi: https://doi.org/10.1002/jsfa.5960

Kubola, J., & Siriamornpun, S. (2011). Phytochemicals and antioxidant activity of different fruit fractions (peel, pulp, aril and seed) of Thai gac (Momordica cochinchinensis Spreng). Food Chemistry, 127(3), 1138–1145. doi: https://doi.org/10.1016/j.foodchem.2011.01.115

León-Guzmán, M. F., Silva, I., & López, M. G. (1997). Proximate chemical composition, free amino acid contents, and free fatty acid contents of some wild edible mushrooms from Querétaro, México. Journal of Agricultural and Food Chemistry, 45(11), 4329–4332. doi: https://doi.org/10.1021/jf970640u

Liu, Y. T., Sun, J., Luo, Z. Y., Rao, S. Q., Su, Y. J., Xu, R. R., & Yang, Y. J. (2012). Chemical composition of five wild edible mushrooms collected from Southwest China and their antihyperglycemic and antioxidant activity. Food and Chemical Toxicology, 50(5), 1238–1244. doi: https://doi.org/10.1016/j.fct.2012.01.023

Liu, K., Wang, J., Zhao, L., & Wang, Q. (2013). Anticancer, antioxidant and antibiotic activities of mushroom Ramaria flava. Food and Chemical Toxicology, 58, 375–380. doi: https://doi.org/10.1016/j.fct.2013.05.001

López-Vazquéz, E., Prieto-García, F., Gayosso-Canales M., Otazo, S. E. M., & Villagómez I. J. R. (2017). Phenolic acids, flavonoids, ascorbic acid, β-glucans and antioxidant activity in mexican wild edible mushrooms. Italian Journal of Food Science, 29(4), 766–774. doi: https://doi.org/10.14674/IJFS-838

Manzi, P., Aguzzi, A., & Pizzoferrato, L. (2001). Nutritional value of mushrooms widely consumed in Italy. Food Chemistry, 73(3), 321–325. doi: https://doi.org/10.1016/S0308-8146(00)00304-6

Mata, M., Halling, R., & Mueller, G. M. (2003). Macrohongos de Costa Rica (vol. 2). Santo Domingo de Heredia, Costa Rica: Ed. INBio.

Mattila, P., Konko, K., Eurola, M., Pihlava, J. M., Astola, J., Vahteristo, L., Hietaniemi, V., …Piironen, V. (2001). Contents of vitamins, mineral elements, and some phenolic compounds in cultivated mushrooms. Journal of Agriculture and Food Chemistry, 49(5), 2343–2348. doi: https://doi.org/10.1021/jf001525d

Montoya-Bello, L., Bandala-Muñoz, V. M. & Guzmán, G. (1987). Especies de hongos (principalmente Agaricales) poco conocidas en el estado de Veracruz. Veracruz, México: INIREB.

Montoya, L., & Bandala, V. M. (2005). Revision of Lactarius from Mexico: additional new records. Persoonia - Molecular Phylogeny and Evolution of Fungi 18(4), 471–483. Retrieved from https://www.semanticscholar.org/paper/Revision-of-Lactarius-from-Mexico.-Additional-new-Montoya-Bandala/f19788701722dbc9c39ab849179477d1fb3fbb63

Ochoa-Zarzosa, A., Vázquez-Garcidueñas, M. S., Robinson-Fuentes, V. A., & Vázquez-Marrufo, G. (2011). Antibacterial and cytotoxic activity from basidiocarp extracts of the edible mushroom Lactarius indigo (Schw.) Fr. (Russulaceae). African Journal of Pharmacy and Pharmacology, 5(2), 281–288. doi: https://doi.org/10.5897/AJPP10.032

Ozgen, M., Reese, R. N., Tulio, A. Z., Scheerens, J. C., & Miller, A. R. (2006). Modified 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) method to measure antioxidant capacity of selected small fruits and comparison to ferric reducing antioxidant power (FRAP) and 2,2′-diphenyl-1- picrylhydrazyl (DPPH) methods. Journal of Agricultural and Food Chemistry, 54(4), 1151–1157. doi: https://doi.org/10.1021/jf051960d

Öztürk, M., Tel, G., Öztürk, F. A., & Duru, M. E. (2014). The cooking effect on two edible mushrooms in anatolia: Fatty acid composition, total bioactive compounds, antioxidant and anticholinesterase activities. Records of Natural Products, 8(2), 189–194. Retrieved from https://www.semanticscholar.org/paper/The-Cooking-Effect-on-Two-Edible-Mushrooms-in-%3A-%2C-%2C-%C3%96zt%C3%BCrk-Tel/a2a000bec1e0a09bac31933c9dab19b5f4a71fd2

Patras, A., Brunton, N. P., Tiwari, B. K., & Butler, F. (2011). Stability and degradation kinetics of bioactive compounds and colour in strawberry jam during storage. Food and Bioprocess Technology, 4(7), 1245–1252. doi: https://doi.org/10.1007/s11947-009-0226-7

Pumtes, P., Rojsuntornkitti, K., Kongbangkerd, T., & Jittrepotch, N. (2016). Effects of different extracting conditions on antioxidant activities of Pleurotus flabellatus. International Food Research Journal, 23(1), 173–179. Retrieved from https://www.semanticscholar.org/paper/Effects-of-different-extracting-conditions-on-of-Pumtes-Rojsuntornkitti/11f3c97bdc0f73c1276c40f2430fedb725972087?p2df

Rao, A. V., & Rao, L. G. (2007). Carotenoids and human health. Pharmacological Research, 55(3), 207–216. doi: 10.1016/j.phrs.2007.01.012

Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved abts radical cation decolorization assay. Free Radical Biology and Medicine, 26(9), 1231–1237. doi: https://doi.org/10.1016/S0891-5849(98)00315-3

Robaszkiewicz, A., Bartosz, G., Lawrynowicz, M., & Soszyński, M. (2010). The role of polyphenols, β-carotene, and lycopene in the antioxidative action of the extracts of dried, edible mushrooms. Journal of Nutrition and Metabolism, Article ID 173274. doi: https://doi.org/10.1155/2010/173274

Rochon, C., Paré, D., Khasa, D. P., Fortin, J. A. (2009). Ecology and management of the lobster mushroom in an eastern Canadian jack pine stand. Canadian Forest Service Publications, 39, 2080–2091. Retrieved from https://cfs.nrcan.gc.ca/publications?id=30735

Ruan-Soto, F., Ordaz-Velázquez, M., García-Santiago, W., & Ovando, E. (2017). Traditional processing and preservation of wild edible mushrooms in Mexico. Annals of Food Processing and Preservation, 2(1), 1013. Retrieved from https://www.jscimedcentral.com/FoodProcessing/foodprocessing-2-1013.pdf

Ruan-Soto, F. (2018). Recolección de hongos comestibles silvestres y estrategias para el reconocimiento de especies tóxicas entre los tsotsiles de Chamula, Chiapas, México. Scientia Fungorum, 48, 1–13. doi: https://doi.org/10.33885/sf.2018.48.1179

Sahagún, F. V. (2020). Aprovechamiento sostenible de hongos comestibles; hacia una seguridad alimentaria. Meio Ambiente, 2(5), 45–55. Retrieved from https://www.meioambientebrasil.com.br/index.php/MABRA/article/view/97

Shahidi, F., & Ambigaipalan, P. (2015). Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects–A review. Journal of Functional Foods, 18(B), 820–897. doi: https://doi.org/10.1016/j.jff.2015.06.018

Sari, M., Prange, A., Lelley, J. I., & Hambitzer, R. (2017). Screening of beta-glucan contents in commercially cultivated and wild growing mushrooms. Food Chemistry, 216, 45–51. doi: https://doi.org/10.1016/j.foodchem.2016.08.010

Sawangwan, T., Wansanit, W., Pattani, L., & Noysang, C. (2018). Study of prebiotic properties from edible mushroom extraction. Agriculture and Natural Resources, 52(6), 519–524. doi: https://doi.org/10.1016/j.anres.2018.11.020

Silva, I., & Lo, M. G. (1997). Proximate chemical composition, free amino acid contents, and free fatty acid contents of some wild edible mushrooms from Querétaro, México. Journal Agricultural and Food Chemistry, 45(11), 4329–4332. doi: https://doi.org/10.1021/jf970640u

Vaz, J. A., Heleno, S. A., Martins, A., Almeida, G. M., Vasconcelos, M. H., & Ferreira, I. C. F. R. (2010). Wild mushrooms Clitocybe alexandri and Lepista inversa: In vitro antioxidant activity and growth inhibition of human tumour cell lines. Food and Chemical Toxicology, 48(10), 2881–2884. doi: https://doi.org/10.1016/j.fct.2010.07.021

Wang, X. M., Zhang, J., Wu, L. H., Zhao, Y. L., Li, T., Li, J. Q., …Liu, H. G. (2014). A mini-review of chemical composition and nutritional value of edible wild-grown mushroom from China. Food Chemistry, 151, 279–285. doi: https://doi.org/10.1016/j.foodchem.2013.11.062

Yahia, E. M., Gutiérrez-Orozco, F., & Moreno-Pérez, M. A. (2017). Identification of phenolic compounds by liquid chromatography-mass spectrometry in seventeen species of wild mushrooms in Central Mexico and determination of their antioxidant activity and bioactive compounds. Food Chemistry, 226, 14–22. doi: https://doi.org/10.1016/j.foodchem.2017.01.044

Zhou, L., Cao, Z., Bi, J., Yi, J., Chen, Q., Wu, X., & Zhou, M. (2016). Degradation kinetics of total phenolic compounds, capsaicinoids and antioxidant activity in red pepper during hot air and infrared drying process. International Journal of Food Science & Technology, 51(4), 842–853. doi: https://doi.org/10.1111/ijfs.13050

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.

Derechos de autor 2021 Revista Chapingo Serie Ciencias Forestales y del Ambiente