Revista Chapingo Serie Ciencias Forestales y del Ambiente
Estequiometría de la caída de acículas de Pinus hartwegii Lindl. en dos bosques alpinos del centro de México
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF

Palabras clave

masa foliar
piso forestal
flujo de nutrientes
pino
cambio climático

Cómo citar

Torres-Duque, F., Gómez-Guerrero, A., Trejo-Téllez, L. I., Reyes-Hernández, V. J., & Correa-Díaz, A. (2021). Estequiometría de la caída de acículas de Pinus hartwegii Lindl. en dos bosques alpinos del centro de México. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 28(1), 57–74. https://doi.org/10.5154/r.rchscfa.2020.12.077

Resumen

Introducción: Es imprescindible tener líneas base sobre la dinámica de nutrientes en los bosques, debido a las alteraciones que el cambio climático pueda causar.
Objetivo: Cuantificar la producción anual de acículas de Pinus hartwegii Lindl. y proporción de nutrientes en los bosques alpinos cerro Jocotitlán (JO) y cerro Tláloc (TL), Estado de México.
Materiales y métodos: En cada bosque se colocaron 12 trampas circulares (30 cm de diámetro) para acícula, a nivel del suelo, distribuidas en cuatro sitios topográficamente contrastantes. Durante un año, se realizaron 228 mediciones de masa foliar y 1 140 determinaciones químicas para conocer la estequiometría de acículas. Las mediciones se sometieron a un análisis de varianza longitudinal, probando las tendencias en el tiempo (P < 0.05).
Resultados y discusión: La producción de acículas en JO fue 67 % superior (11.2 Mg∙ha-1∙año-1) que en TL (6.7 Mg∙ha-1∙año-1); la caída fue mayor durante el verano (junio y julio, meses con mayor precipitación). En JO, el flujo de nutrientes fue 98.0, 5.2, 8.7, 24.6 y 5.6 kg∙ha-1∙año-1 para N, P, K, Ca y Mg, respectivamente; para TL fue 55.3, 3.4, 7.8, 14.4 y 4.7 kg∙ha-1∙año-1 en el mismo orden de nutrientes. Las concentraciones de nutrientes fueron más bajas de marzo a mayo. Excepto por K, las concentraciones de nutrientes y producción de acículas mostraron tendencias estacionales cuadráticas y cúbicas. La dinámica del Mg y proporciones N:Mg y N:K en TL fueron más favorables para el crecimiento arbóreo.
Conclusiones: Los bosques Jocotitlán y Tláloc son muy productivos en acícula (comparados con otros ecosistemas) y dinámicos en la transferencia de nutrientes.

https://doi.org/10.5154/r.rchscfa.2020.12.077
PDF

Citas

Acosta Mireles, M., Carrillo Anzures, F., Delgado, D., & Velasco Bautista, E. (2014). Establecimiento de parcelas permanentes para evaluar impactos del cambio climático en el Parque Nacional Izta-Popo. Revista Mexicana de Ciencias Forestales, 5(26), 06—29. doi: https://doi.org/10.29298/rmcf.v5i26.287

Alcántara, G. G., & Sandoval, V. M. (1999). Manual de análisis químico de tejido vegetal. Guía de muestreo, preparación, análisis e interpretación. Chapingo, Estado de México, México: Sociedad Mexicana de la Ciencia del Suelo A. C.

Arce, J. L., Layer, P. W., Macías, J. L., Morales-Casique, E., GarcíaPalomo, A., Jiménez-Domínguez, F. J., …VásquezSerrano, A. (2019). Geology and stratigraphy of the Mexico basin (Mexico city), central Trans-Mexican volcanic Belt. Journal of Maps, 15(2), 320—332. doi: 10.1080/17445647.2019.1593251

Binkley, D., & Fisher, R. (2020). Ecology and management of forest soils (5th ed.). UK: Wiley-Blackwell.

Bray, R. H., & Kurtz, L. (1945). Determination of total, organic, and available forms of phosphorus in soils. Soil Science, 59(1), 39—46. doi: https://doi.org/10.1097/00010694-194501000-00006

Bremmer, J. M. (1965). Total nitrogen. In C. A. Black (Ed.), Methods of soil analysis. Part 2: Chemical and microbial properties (1049—1178). Madison, WI, USA: American Society of Agronomy.

Cheng, C.-H., Lee, C.-Y., Lee, H.-R., Chen, C.-P., & Menyailo, O. V. (2020). Effects of typhoon disturbances on seasonal and interannual patterns of litterfall on coniferous and broadleaf plantations in Xitou, central Taiwan. Journal of Forest Research, 25(3), 155—162. doi: https://doi.org/10.1080/13416979.2020.1762026

Correa-Díaz, A., Gómez-Guerrero, A., Vargas-Hernández, J. J., Rozenberg, P., & Horwath, W. (2020). Long-term wood micro-density variation in alpine forests at Central México and their spatial links with remotely sensed information. Forests, 11(4), 452. doi: https://doi.org/10.3390/f11040452

Correa‐Díaz, A., Silva, L., Horwath, W., Gómez‐Guerrero, A., Vargas‐Hernández, J., Villanueva‐Díaz, J., …Velázquez‐Martínez, A. (2020). From trees to ecosystems: Spatiotemporal scaling of climatic impacts on montane landscapes using dendrochronological, isotopic, and remotely sensed data. Global Biogeochemical Cycles, 34(3), e2019GB006325. doi: https://doi.org/10.1029/2019GB006325

Fitzmaurice, G. M., Laird, N. M., & Ware, J. H. (2004). Applied longitudinal analysis. USA Wiley.

Frank, D. A., Pontes, A. W., & McFarlane, K. J. (2012). Controls on soil organic carbon stocks and turnover among North American ecosystems. Ecosystems, 15(4), 604—615. doi: https://doi.org/10.1007/s10021-012-9534-2

García, E. (2004). Modificaciones al sistema de clasificación climática de Köppen (Para adaptarlo a las condiciones de la República Mexicana) (5.a ed.). México: Instituto de Geografía UNAM.

Gavinet, J., Ourcival, J.-M., & Limousin, J.-M. (2019). Rainfall exclusion and thinning can alter the relationships between forest functioning and drought. New Phytologist, 223(3), 1267—1279. doi: https://doi.org/10.1111/nph.15860

Ge, J., & Xie, Z. (2017). Leaf litter carbon, nitrogen, and phosphorus stoichiometric patterns as related to climatic factors and leaf habits across Chinese broadleaved tree species. Plant Ecology, 218(9), 1063—1076. doi: 10.1007/s11258-017-0752-8

Gómez-Guerrero, A., & Doane, T. (2018). The response of forest ecosystems to climate change. In W. R. Horwath & K. Yakov (Eds.), Climate change impacts on soil processes and ecosystem properties (vol. 35, pp. 185—206). Elsevier. doi: https://doi.org/10.1016/B978-0-444-63865-6.00007-7

González-Rodríguez, H., Domínguez-Gómez, T. G., Cantú-Silva, I., Gómez-Meza, M. V., Ramírez-Lozano, R. G., PandoMoreno, M., & Fernández, C. (2011). Litterfall deposition and leaf litter nutrient return in different locations at Northeastern Mexico. Plant Ecology, 212(10), 1747. doi: https://doi.org/10.1007/s11258-011-9952-9

González-Rodríguez, H., Ramírez-Lozano, R. G., Cantú-Silva, I., Gómez-Meza, M. V., Estrada-Castillón, E., & Arévalo, J. R. (2018). Deposition of litter and nutrients in leaves and twigs in different plant communities of northeastern Mexico. Journal of Forestry Research, 29(5), 1307—1314. doi: https://doi.org/10.1007/s11676-017-0553-x

González de Andrés, E. (2019). Interactions between climate and nutrient cycles on forest response to global change: The role of mixed forests. Forests, 10(8), 609. doi: https://doi.org/10.3390/f10080609

González de Andrés, E., Blanco, J. A., Imbert, J. B., Guan, B. T., Lo, Y. H., & Castillo, F. J. (2019). ENSO and NAO affect long‐term leaf litter dynamics and stoichiometry of Scots pine and European beech mixedwoods. Global Change Biology, 25(9), 3070—3090. doi: https://doi.org/10.1111/gcb.14672

Kobe, R. K., Lepczyk, C. A., & Iyer, M. (2005). Resorption efficiency decreases with increasing green leaf nutrients in a global data set. Ecology, 86(10), 2780—2792. doi: https://doi.org/10.1890/04-1830

Körner, C. (2012). Alpine treelines: functional ecology of the global high elevation tree limits. Springer Science & Business Media. doi: https://doi.org/10.1007/978-3-0348-0396-0

Kotowska, M. M., Leuschner, C., Triadiati, T., & Hertel, D. (2016). Conversion of tropical lowland forest reduces nutrient return through litterfall, and alters nutrient use efficiency and seasonality of net primary production. Oecologia, 180(2), 601—618. doi: https://doi.org/10.1007/s00442-015-3481-5

Lehtonen, A., Lindholm, M., Hokkanen, T., Salminen, H., & Jalkanen, R. (2008). Testing dependence between growth and needle litterfall in Scots pine - a case study in northern Finland. Tree Physiology, 28(11), 1741—1749. doi: https://doi.org/10.1093/treephys/28.11.1741

López-Escobar, N. F., Gómez-Guerrero, A., Velázquez-Martínez, A., Fierros-González, A. M., Castruita-Esparza, L. U., & Vera-Castillo, J. A. (2018). Reservorios y dinámica de nutrientes en dos rodales bajo aprovechamiento de Pinus montezumae Lamb. en Tlaxcala, México. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 24(1), 115—129. doi: https://doi.org/10.5154/r.rchscfa.2017.09.055

Mantero-García, H. D., Gómez-Guerrero, A., Gavi-Reyes, F., Zamora-Morales, B. P., & Ramírez-Ayala, C. (2019). ¿Es sustentable el aprovechamiento de tierra de hoja en bosques de encino? Madera y Bosques, 25(3), e2531807. doi: https://doi.org/10.21829/myb.2019.2531807

Marín, L. E., Escolero-Fuentes, O., & Trinidad-Santos, A. (2002). Physical geography, hydrogeology, and forest soils of the basin of Mexico. In M. E. Fenn, L. I. de Bauer, & T. Hernandez-Tejeda (Eds.), Urban Air Pollution and Forests(pp. 44—67). USA: Springer. doi: https://doi.org/10.1007/978-0-387-22520-3

Moreno Valdez, M. E., Domínguez Gómez, T. G., Alvarado, M. d. S., Colín, J. G., Corral Rivas, S., & González Rodríguez, H. (2018). Aporte y descomposición de hojarasca en bosques templados de la región de El Salto, Durango. Revista Mexicana de Ciencias Forestales, 9(47), 70—93. doi: https://doi.org/10.29298/rmcf.v9i47.180

Neumann, M., Ukonmaanaho, L., Johnson, J., Benham, S., Vesterdal, L., Novotný, R., …Michopoulos, P. (2018). Quantifying carbon and nutrient input from litterfall in European forests using field observations and modeling. Global Biogeochemical Cycles, 32(5), 784—798. doi: https://doi.org/10.1029/2017GB005825

Núñez-García, A., Gómez-Guerrero, A., Terrazas-Salgado, T. M., Vargas-Hernández, J. J., & Villanueva-Díaz, J. (2020). Analysis of basal area increment of Pinus hartwegii Lindl. at different elevations and aspects on Jocotitlán Mountain, State of Mexico. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 27(1), 77—88. doi: https://doi.org/10.5154/r.rchscfa.2019.10.074

Pérez-Suárez, M., Arredondo-Moreno, J., Huber-Sannwald, E., & Vargas-Hernández, J. (2009). Production and quality of senesced and green litterfall in a pine–oak forest in central-northwest Mexico. Forest Ecology and Management, 258(7), 1307—1315. doi: https://doi.org/10.1016/j.foreco.2009.06.031

R Core Team. (2020). A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.R-project.org/

Rocha-Loredo, A. G., & Ramírez-Marcial, N. (2009). Producción y descomposición de hojarasca en diferentes condiciones sucesionales del bosque de pino-encino en Chiapas, México. Boletín de la Sociedad Botánica de México, 84, 1—12. doi: https://doi.org/10.17129/botsci.2287

Sardans, J., Alonso, R., Janssens, I. A., Carnicer, J., Vereseglou, S., Rillig, M. C., …Penuelas, J. (2016). Foliar and soil concentrations and stoichiometry of nitrogen and phosphorous across European Pinus sylvestris forests: relationships with climate, N deposition and tree growth. Functional Ecology, 30(5), 676—689. doi: https://doi.org/10.1111/1365-2435.12541

SAS Institute Inc. (SAS). (2011). SAS/ETS 9.3 User’s Guide. Cary, NC, USA: Author.

Sayer, E. J., Rodtassana, C., Sheldrake, M., Bréchet, L. M., Ashford, O. S., Lopez-Sangil, L., …Wright, S. J. (2020). Revisiting nutrient cycling by litterfall—Insights from 15 years of litter manipulation in old-growth lowland tropical forest. In A. J. Dumbrell, E. C. Turner, & T. M. Fayle (Eds.), Advances in ecological research (vol. 62, pp. 173—223): Elsevier. doi: https://doi.org/10.1016/bs.aecr.2020.01.002

Schlesinger, W. H., & Bernhardt, E. S. (2013). Biogeochemistry: an analysis of global change (3rd ed.). San Diego, California, USA: Academic Press.

Silva, L. C., Gómez‐Guerrero, A., Doane, T. A., & Horwath, W. R. (2015). Isotopic and nutritional evidence for species‐and site‐specific responses to N deposition and elevated CO2 in temperate forests. Journal of Geophysical Research: Biogeosciences, 120(6), 1110—1123. doi: https://doi.org/10.1002/2014JG002865

Tripler, C. E., Kaushal, S. S., Likens, G. E., & Walter, M. T. (2006). Patterns in potassium dynamics in forest ecosystems. Ecology Letters, 9(4), 451—466. doi: https://doi.org/10.1111/j.1461-0248.2006.00891.x

Wood, T. E., Lawrence, D., & Clark, D. A. (2006). Determinants of leaf litter nutrient cycling in a tropical rain forest: soil fertility versus topography. Ecosystems, 9(5), 700—710. doi: https://doi.org/10.1007/s10021-005-0016-7

Zar, J. H. (2010). Biostatistical analysis: Pearson new international edition (5th ed.). New Jersey, USA: Prentice Hall.

Zhang, H., Yuan, W., Dong, W., & Liu, S. (2014). Seasonal patterns of litterfall in forest ecosystem worldwide. Ecological Complexity, 20, 240—247. doi: https://doi.org/10.1016/j.ecocom.2014.01.003

Zhu, X., Zou, X., Lu, E., Deng, Y., Luo, Y., Chen, H., & Liu, W. (2021). Litterfall biomass and nutrient cycling in karst and nearby non-karst forests in tropical China: A 10-year comparison. Science of the Total Environment, 758, 143619. doi: https://doi.org/10.1016/j.scitotenv.2020.143619

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.

Derechos de autor 2021 Revista Chapingo Serie Ciencias Forestales y del Ambiente