Revista Chapingo Serie Ciencias Forestales y del Ambiente
Nutrient suppression effect on growth and development of Ochroma pyramidale (Cav. ex Lam.) Urb. seedlings
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF

Keywords

forest nutrition
phosphorus
nitrogen
forest nursery
nutrient uptake

How to Cite

Higuita-Aguirre, M. I., León-Peláez, J. D., & Osorio-Vega, N. W. (2021). Nutrient suppression effect on growth and development of Ochroma pyramidale (Cav. ex Lam.) Urb. seedlings. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 27(3), 465–480. https://doi.org/10.5154/r.rchscfa.2020.12.073

##article.highlights##

  • Suppression of N, P, K, Ca, Mg, S, B and cationic microelements was evaluated in Ochroma pyramidale.
  • P and N suppression generated negative consequences on O. pyramidale growth.
  • N and P suppression caused yellowing and necrosis, respectively, in leaves.
  • Influence by suppression of K, Mg, cationic microelements, S, Ca, and B was low.
  • B suppression showed no visual symptoms of deficiency.

Abstract

Introduction: Ochroma pyramidale (Cav. ex Lam.) Urb. is a species with high potential for use in commercial reforestation. Knowledge of nutrient requirements in nursery increases the chances of success in the field by generating plants with adequate morphological and physiological characteristics.
Objective: To identify the key nutrients for O. pyramidale growth in nursery and to characterize the associated visual symptoms of deficiency.
Materials and methods: The design was completely randomized with 10 treatments: one treatment without fertilization, one treatment with complete fertilization (CF), and eight resulting from the CF treatment with suppression of N, P, K, Ca, Mg, S, B and cationic microelements (Mn, Fe, Cu and Zn). The effect of each treatment was determined by height, root collar diameter, aboveground dry biomass, root dry biomass, leaf area and relative growth rate. An analysis of variance and separation of means was performed using the Tukey's test (P < 0.05).
Results and discussion: Nutrient suppression had significant effects (P < 0.05) on growth after six months in nursery. P was the most limiting element, followed by N. The other treatments showed no significant differences compared to the FC treatment. N suppression caused yellowing, and lack of P caused necrosis with subsequent death and detachment in leaves. B suppression showed no clear deficiency symptoms.
Conclusion: O. pyramidale showed high nutrient uptake efficiency. Only N and P strongly limited its development, which represent the key nutrients for the species.

https://doi.org/10.5154/r.rchscfa.2020.12.073
PDF

References

Allen, K. S., Harper, R. W., Bayer, A., & Brazee, N. J. (2017). A review of nursery production systems and their influence on urban tree survival. Urban Forestry & Urban Greening, 21, 183‒191. doi: https://doi.org/10.1016/j.ufug.2016.12.002

Ashiono, F., Kamiri, H. W., & Kinyanjui, M. (2019). Evaluation of mineral nutrition and growth of Eucalyptus saligna seedlings raised on organic– enriched nursery potting media. Journal of Research in Forestry, Wildlife and Environment, 11(1), 39‒50. Retrieved from https://www.ajol.info/index.php/jrfwe/article/view/186259

Barroso, D. G., Figueiredo, F. A. M. M. D., Pereira, R. D. C., Mendonça, A. V. R., & Silva, L. D. C. (2005). Diagnóstico de deficiências de macronutrientes em mudas de teca. Revista Árvore, 29(5), 671–679. doi: https://doi.org/10.1590/S0100-67622005000500002

Birchler, T. A., Royo, A., & Pardos, M. (1998). La planta ideal: revisión del concepto, parámetros definitorios e implementación práctica. Forest Systems, 7(1), 109–121. Retrieved from https://recyt.fecyt.es/index.php/IA/article/view/2806/2169

Borrega, M., & Gibson, L. J. (2015). Mechanics of balsa (Ochroma pyramidale) wood. Mechanics of Materials, 84, 75–90. doi: https://doi.org/10.1016/j.mechmat.2015.01.014

Camacho, M. A., Camara, A. P., & Rodriguez-Zardin, A. (2014). Diagnose visual de deficiência de nutrientes em mudas de Bombacopsis glabra. CERNE, 20(3), 427–431. doi: https://doi.org/10.1590/01047760201420031304

Cañadas-López, Á., Rade-Loor, D., Siegmund-Schultze, M., Moreira-Muñoz, G., Vargas-Hernández, J. J., & Wehenkel, C. (2019). Growth and yield models for balsa wood plantations in the coastal lowlands of Ecuador. Forests, 10(9), 733. doi: https://doi.org/10.3390/f10090733

Carlos, L., Venturin, N., Macedo, R. L. G., & Higashikawa, E. M. (2013). Crescimento e nutrição mineral de mudas de barbatimão sob efeito da omissão de nutrientes. Floresta, 43(4), 569–568. doi: https://doi.org/10.5380/rf.v43i4.29443

Chen, L., Zeng, J., Xu, D. P., Zhao, Z. G., & Guo, J. J. (2010). Macronutrient deficiency symptoms in Betula alnoides seedlings. Journal of Tropical Forest Science, 22(4), 403–413. Retrieved from https://www.frim.gov.my/v1/JTFSOnline/jtfs/v22n4/403-413.pdf

Clark, M. J., & Zheng, Y. (2015). Species-specific fertilization can benefit container nursery crop production. Canadian Journal of Plant Science, 95(2), 251–262. doi: https://doi.org/10.4141/cjps-2014-340

Coll, L., Potvin, C., Messier, C., & Delagrange, S. (2008). Root architecture and allocation patterns of eight native tropical species with different successional status used in open-grown mixed plantations in Panama. Trees, 22, 585. doi: https://doi.org/10.1007/s00468-008-0219-6

Corcioli, G., Divino-Borges, J., & de Jesus, R. P. (2016). Deficiência de macro e micronutrientes em mudas maduras de Khaya ivorensis estudadas em viveiro. CERNE, 22(1), 121–128. doi: https://doi.org/10.1590/01047760201622012085

Cubillos, A. M., Vallejo, V. E., Arbeli, Z., Terán, W., Dick, R. P., Molina, C. H., … Roldan, F. (2016). Effect of the conversion of conventional pasture to intensive silvopastoral systems on edaphic bacterial and ammonia oxidizer communities in Colombia. European Journal of Soil Biology, 72, 42–50. doi: https://doi.org/10.1016/j.ejsobi.2015.12.003

Dickson, A., Leaf, A. L., & Hosner, J. F. (1960). Quality appraisal of white spruce and white pine seedling stock in nurseries. The Forestry Chronicle, 36(1), 10–13. doi: https://doi.org/10.5558/tfc36010-1

Gregorio, N., Herbohn, J., Harrison, S., & Smith, C. (2015). A systems approach to improving the quality of tree seedlings for agroforestry, tree farming and reforestation in the Philippines. Land Use Policy, 47, 29–41. doi: https://doi.org/10.1016/j.landusepol.2015.03.009

Grossnickle, S. C., & Macdonald, J. E. (2018). Why seedlings grow: influence of plant attributes. New Forests, 49(1), 1–34. doi: https://doi.org/10.1007/s11056-017-9606-4

Hall, J. S., Ashton, M. S., Garen, E. J., & Jose, S. (2011). The ecology and ecosystem services of native trees: Implications for reforestation and land restoration in Mesoamerica. Forest Ecology and Management, 261(10), 1553‒1557. doi: https://doi.org/10.1016/j.foreco.2010.12.011

Herrera-Ramírez, D. A., León-Peláez, J. D., Ruiz-Rendón, M., Osorio-Vega, N. W., Correa-Londoño, G., Ricardo, R. E., & Uribe Bravo, Á. (2014). Evaluation of nutritional requirements in nurseries for certain species used in urban forestry. Escuela de Ingeniería de Antioquia, 11(21), 41–54. doi: https://doi.org/10.14508/reia.2014.11.21.41-54

Higuita-Aguirre, M. I., León-Peláez, J. D., Osorio, N. W., & Correa, G. A. (2021). Effects of nutrient deprivation on the growth and development of Tabebuia rosea seedlings. Floresta e Ambiente, 28(1). doi: https://doi.org/10.1590/2179-8087-FLORAM-2019-0112

Holdridge, L. R. (1987). Ecología basada en zonas de vida. San José de Costa Rica, Costa Rica: Instituto Interamericano de Cooperación para la Agricultura.

Jaramillo, D. F. (2011). El suelo: origen, propiedades, espacialidad. Medellín, Colombia: Universidad Nacional de Colombia.

Keller, A. A., & Fox, J. (2019). Giving credit to reforestation for water quality benefits. PLoS ONE, 14(6), 1‒18. doi: https://doi.org/10.1371/journal.pone.0217756

Kołodziejek, J. (2019). Growth and competitive interaction between seedlings of an invasive Rumex confertus and of co-occurring two native Rumex species in relation to nutrient availability. Scientific Reports, 9(1), 1‒12. doi: https://doi.org/10.1038/s41598-019-39947-z

Mack, R., Owen, J. S., Niemiera, A. X., & Sample, D. J (2019). Workshop: Validation of nursery and greenhouse best management practices through scientific evidence. Hort Technology, 29(6), 700‒715. doi: https://doi.org/10.21273/HORTTECH04303-19

Medina-Macedo, L., de Lacerda, A. E. B., Sebbenn, A. M., Ribeiro, J. Z., Soccol, C. R., & Bittencourt, J. V. M. (2016). Using genetic diversity and mating system parameters estimated from genetic markers to determine strategies for the conservation of Araucaria angustifolia (Bert.) O. Kuntze (Araucariaceae). Conservation Genetics, 17(2), 413‒423. doi: https://doi.org/10.1007/s10592-015-0793-2

Miyajima, R. H., Barreto, V. C. S., de Oliveira, P. A., Batistela, G. C., & Simões, D. (2018). Risk analysis of the economic benefits of Ochroma pyramidale: A case study of forest planting in Brazil. Journal of Agricultural Science and Technology B, 8(7), 444–453. doi: https://doi.org/10.17265/2161-6264/2018.07.004

Oliet, J. A., Planelles, R., Artero, F., & Domingo-Santos, J. M. (2016). Establishing Acacia salicina under dry Mediterranean conditions: The effects of nursery fertilization and tree shelters on a mid-term experiment with saline. Ciencia e Investigación Agraria, 43(1), 69–84. doi: https://doi.org/10.4067/S0718-16202016000100007

Pandey, R. (2015). Mineral nutrition of plants. In B. Bahadur, R. M. Venkat, L. Sahijram, & K. Krishnamurthy (Eds.), Plant biology and biotechnology (pp. 499–538). New Delhi, República de la India: Springer.

Paz, H. (2003). Root/Shoot allocation and root architecture in seedlings: variation among forest sites, microhabitats, and ecological groups. Biotropica, 35(3), 318–332. doi: https://doi.org/10.1111/j.1744-7429.2003.tb00586.x

Peláez-Silva, J. A., León‐Peláez, J. D., & Lema‐Tapias, A. (2019). Conifer tree plantations for land rehabilitation: an ecological‐functional evaluation. Restoration Ecology, 27(3), 607–615. doi: https://doi.org/10.1111/rec.12910

Pérez-Harguindeguy, N., Diaz, S., Gamier, E., Lavorel, S., Poorter, H., Jaureguiberry, P., ...Cornelissen, C. (2013). New handbook for standardized measurement of plant functional traits worldwide. Australian Journal of Botany, 61(3), 167–234. doi: https://doi.org/10.1071/BT12225

Raij, B. V. (2017). Fertilidade do solo e manejo de dutrientes (2.a ed.). Piracicaba, Brasil: International Plant Nutrition Institute.

Raj, G. B., Rajamani, K., & Kumara, B. H. (2020). Influence of silicon fertilization on nitrogen fractions and nutrient status of rice grown soils in Telangana state. Current Journal of Applied Science and Technology, 39(7), 26‒34. doi: https://doi.org/10.9734/cjast/2020/v39i730573

R Core Team. (2019). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

Sepúlveda, Y. L., Diez, M. C., Moreno, F. H., León, J. D., & Osorio, N. W. (2014). Efectos de la iluminación relativa y la fertilización sobre el crecimiento de plántulas de roble andino en vivero. Acta Biológica Colombiana, 19(2), 211‒220. Retrieved from https://www.redalyc.org/pdf/3190/319030502009.pdf

Souza, C. A. S. D., Tucci, C. A. F., Silva, J. F. D., & Ribeiro, W. O. (2010). Exigências nutricionais e crescimento de plantas de mogno (Swietenia macrophylla King.). Acta Amazônica, 40(3), 515‒522. doi: https://doi.org/10.1590/S0044-59672010000300010

Souza, P. A., Venturin, N., de Macedo, R. L. G., Venturin, R. P., Tucci, C. A. F., & Carlos, L. (2009). Nutritional assessment of cedar seedlings (Cedrela fissilis Vell.) grown in a greenhouse. CERNE, 15(2), 236‒243. Retrieved from http://cerne.ufla.br/site/index.php/CERNE/article/view/208

Unidad de Planificación Rural Agropecuaria (UPRA). (2014). Zonificación para plantaciones forestales con fines comerciales, escala 1: 100.000. Retrieved from http://bibliotecadigital.agronet.gov.co/handle/11438/8496

Vieira, C. R., de Oliveira, D. P., & Weber, O. L. S. (2015). Omissão de macronutrientes no crescimento e deficiência nutricional de mudas do vinhático (Plathymenia reticulata). Revista Biociências, 21(2), 74‒85. Retrieved from http://periodicos.unitau.br/ojs/index.php/biociencias/article/view/2112

Vieira, C. R., Weber, O. L. S., Scaramuzza, J. F., Costa, A. C., & de Souza, T. R. (2011). Descrição de sintomas visuais em função das deficiências de macronutrientes em mudas de cerejeira (Amburana acreana). Floresta, 41(4), 789‒ 796. doi: https://doi.org/10.5380/rf.v41i4.25343

Wulandari, D., Cheng, W., & Tawaraya, K. (2016). Arbuscular mycorrhizal fungal inoculation improves Albizia saman and Paraserianthes falcataria growth in post-opencast coal mine field in East Kalimantan, Indonesia. Forest Ecology and Management, 376, 67‒73. doi: https://doi.org/10.1016/j.foreco.2016.06.008

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2021 Revista Chapingo Serie Ciencias Forestales y del Ambiente