Revista Chapingo Serie Ciencias Forestales y del Ambiente
Efecto de las condiciones de extracción sobre la concentración de compuestos fenólicos en residuos de orégano mexicano (Lippia graveolens Kunth)
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF

Palabras clave

extracción etanólica
fenoles totales
capacidad antioxidante
flavonoides
naringenina

Cómo citar

Frías-Zepeda , M. E., & Rosales-Castro, M. (2021). Efecto de las condiciones de extracción sobre la concentración de compuestos fenólicos en residuos de orégano mexicano (Lippia graveolens Kunth). Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 27(3), 367–381. https://doi.org/10.5154/r.rchscfa.2020.10.066

##article.highlights##

  • La concentración de fenoles se evaluó en extractos de hojas (sin aceite) y tallos de Lippia graveolens.
  • Los extractos se obtuvieron con etanol acuoso (30, 50 y 80 %) y relaciones masa/volumen 1:10, 1:20 y 1:30.
  • Las hojas tuvieron mayor concentración de fenoles totales y antioxidantes que los tallos.
  • Los compuestos fenólicos tuvieron mejor disolución en etanol que en agua (80 % y relación 1:30).
  • Los fenoles naringenina, taxifolina, eriodictiol, ácido cafeico y luteolina fueron identificados.

Resumen

Introducción: Las hojas de orégano mexicano (Lippia graveolens Kunth) se comercializan para su uso en alimentos y para la extracción de aceite esencial. De los residuos (hojas sin el aceite y tallos) pueden obtenerse compuestos fenólicos con propiedades antioxidantes, mediante condiciones de extracción adecuadas.
Objetivo: Evaluar el efecto del solvente de extracción y la relación masa/volumen sobre la concentración de compuestos fenólicos y su capacidad antioxidante en residuos de orégano.
Materiales y métodos: La hoja residual (sin aceite) y los tallos del orégano se utilizaron para la obtención de extractos con etanol acuoso al 30, 50 y 80 % (ET30, ET50, ET80, respectivamente) y relaciones masa/volumen de solvente (1:10, 1:20 y 1:30). El rendimiento en sólidos, la concentración de fenoles totales y flavonoides, y la capacidad antioxidante se evaluaron en los extractos. Se realizó un análisis de similitud entre extractos por HPLC-DAD y se identificaron los fenoles principales por UPLC-MS.
Resultados y discusión: Los rendimientos de los extractos, la concentración de fenoles y flavonoides y la capacidad antioxidante en las hojas fueron mayores que en los tallos. La concentración máxima de fenoles se obtuvo con ET80 y relación 1:30, lo cual indica mejor disolución en etanol que en agua. Los extractos ET50 y ET80 tuvieron semejanza cromatográfica de fenoles en ambos residuos; la naringenina, taxifolina, eriodictiol, ácido cafeico y luteolina fueron los compuestos mayoritarios.
Conclusión: Las concentraciones de etanol-agua y las relaciones masa/solvente son factibles para la obtención de compuestos fenólicos tipo flavonoide y no flavonoide con capacidad antioxidante, a partir de hojas sin aceite y tallos de orégano.

https://doi.org/10.5154/r.rchscfa.2020.10.066
PDF

Citas

Ajila, C. M., Brar, S. K., Verma, M., Tyagi, R. D., Godbout, S., & Valéro, J. R. (2011). Extraction and analysis of polyphenols: Recent trends. Critical Reviews in Biotechnology, 31(3), 227‒249. doi: https://doi.org/10.3109/07388551.2010.513677

Ambigaipalan, P., Costa de Camargo A., & Shahidi, F. (2016). Phenolic compounds of pomegranate byproducts (outer skin, mesocarp, divider membrane) and their antioxidant activities. Journal of Agricultural and Food Chemistry, 64(34), 6584–6604. doi: https://doi.org/10.1021/acs.jafc.6b02950

Apak, R., Özyürek, M., Gü clu̧, K., & Çapanoglŭ, E. (2016). Antioxidant activity/capacity measurement. 1. Classification, physicochemical principles, mechanisms, and electron transfer (ET)-based assays. Journal of Agricultural and Food Chemistry, 64(5), 997–1027. doi: https://doi.org/10.1021/acs.jafc.5b04739

Arias, J., Mejía, J., Córdoba, Y., Martínez, J. R., Stashenko, E., & Del Valle, J. M. (2020). Optimization of flavonoids extraction from Lippia graveolens and Lippia origanoides chemotypes with ethanol-modified supercritical CO2 after steam distillation. Industrial Crops and Products, 146, 112170. doi: https://doi.org/10.1016/j.indcrop.2020.112170

Caleja, C., Ribeiro, A., Barreiro, F. M., & Ferreira, I. (2017). Phenolic compounds as nutraceuticals or functional food. Current Pharmaceutical Design, 23(19), 2787–2806. doi: https://doi.org/10.2174/1381612822666161227153906

Chen, L., Teng, H., Xie, Z., Cao, H., Cheang, W. S., Skalicka-Woniak, K., Georgiev, M. I., & Xiao, J. (2018). Modifications of dietary flavonoids towards improved bioactivity: An update on structure–activity relationship. Critical Reviews in Food Science and Nutrition, 58(4), 513–527. doi: https://doi.org/10.1080/10408398.2016.1196334

Costa, B. G., Melo, P. S., Bergamaschi, K. B., Tiveron, A. P., Massarioli, A. P., & de Alencar, S. M. (2016). Extraction yield, antioxidant activity and phenolics from grape, mango, and peanut agro-industrial by-products. Ciência Rural, Santa Maria, 46(8), 1498–1504. doi: https://doi.org/10.1590/0103-8478cr20150531

Dang, Y-Y., Zhang, H., & Xiu, Z-L. (2014). Microwave‐assisted aqueous two‐phase extraction of phenolics from grape (Vitis vinifera) seed. Chemical Technology and Biotechnology, 89(10), 1576–1581. doi: https://doi.org/10.1002/jctb.4241

Del Rio, D., Rodriguez-Mateos, A., Spencer, J. P. E., Tognolini, M., Borges, G., & Crozier, A. (2013). Dietary (Poly) phenolics in human health: Structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxidants & Redox Signaling, 18(14), 1818–1892. doi: https://doi.org/10.1089/ars.2012.4581

Den, H. D. J., & Tsiani, E. (2019). Antidiabetic properties of naringenin: A citrus fruit polyphenol. Biomolecules, 9(3), 99. doi: https://doi.org/10.3390/biom9030099

González, G. M. C., Soto-Hernández, M., Kite, G., Martínez-Vázquez, M. (2007). Actividad antioxidante de flavonoides del tallo de orégano mexicano (Lippia graveolens HBK var. berlandieri Schauer). Revista Fitotecnia Mexicana, 30(1), 43–49. Retrieved from https://www.revistafitotecniamexicana.org/documentos/30-1/6a.pdf

González-Trujano, M. E., Hernández-Sánchez, L. Y., Muñoz, V., Dorazco-González, A., Guevara, P., & Aguirre-Hernández, E. (2017). Pharmacological evaluation of the anxiolyticlike effects of Lippia graveolens and bioactive compounds. Pharmaceutical Biology, 55(1), 1569–1576. doi: https://doi.org/10.1080/13880209.2017.1310908

Granados-Sánchez, D., Martínez-Salvador, M., López-Ríos, G. F., Borja-De la Rosa, A., Rodríguez-Yam, G. A. (2013). Ecología, aprovechamiento y comercialización del orégano (Lippia graveolens H. B. K.) en Mapimí, Durango. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 19(2), 305–321. doi: https://doi.org/10.5154/r.rchscfa.2012.05.035

Gutiérrez-Grijalva, E. P., Ambriz-Pérez, D. L., Leyva-López, N., Castillo-López, R. I. & Heredia, J. B. (2016). Review: dietary phenolic compounds, health benefits and bioaccessibility. Archivos Latinoamericanos de Nutrición, 66(2), 87–100. Retrieved from https://www.alanrevista.org/ediciones/2016/2/art-1/

Gutiérrez-Grijalva, E. P., Picos-Salas, M. A., Leyva-López, N., Criollo-Mendoza, M. S., Vázquez-Olivo, G., & Heredia, J. B. (2018). Flavonoids and phenolic acids from oregano: Occurrence, biological activity and health benefits. Plants, 7(1), 2. doi: https://doi.org/10.3390/plants7010002

Gutiérrez-Macías, P., Peralta-Cruz, J., Borja-de-la-Rosa, A., & Barragán-Huerta, B. E. (2016). Peltomexicanin, a peltogynoid quinone methide from Peltogyne mexicana Martínez purple heartwood. Molecules, 21(2), 186. doi: https://doi.org/10.3390/molecules21020186

Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2018). PAST (PAleontological STatistics) 3.21 |Miscellaneous Software|. Retrieved from https://www.fileeagle.com/software/1986/Past/

Islam, A., Islam, S., Rahman, K., Uddin, N., & Akanda, R. (2020). The pharmacological and biological roles of eriodictyol. Archives of Pharmacal Research, 43, 582–592. doi: https://doi.org/10.1007/s12272-020-01243-0

Leyva-López, N., Gutierrez-Grijalva, E. P., Ambriz-Pérez, D. L., & Heredia, J. B. (2016). Flavonoids as cytokine modulators: A possible therapy for inflammation-related diseases. International Journal Molecular Science, 17(6), 921. doi: https://doi.org/10.3390/ijms17060921

Lim, K. J. A., Cabajar, A. A., Lobarbio, C. F. Y., Taboada, E. B., & Lacks, D. J. (2019). Extraction of bioactive compounds from mango (Mangifera indica L. var. Carabao) seed kernel with ethanol–water binary solvent systems. Journal of Food Science and Technology, 56, 2536–2544. doi: https://doi.org/10.1007/s13197-019-03732-7.

Lim, Y. P., Sook, F. P., Yusoff, M. M., Mudalipa, S. K. A., & Gimbun, J. (2019). Correlation between the extraction yield of mangiferin to the antioxidant activity, total phenolic and total flavonoid content of Phaleria macrocarpa fruits. Journal of Applied Research on Medicinal and Aromatic Plants, 14, 100224. doi: https://doi.org/10.1016/j.jarmap.2019.100224

Lin, L-S., Sudarsan, M., Robbins, R. J., & Harnly, J. M. (2007). Identification and quantification of flavonoids of Mexican oregano (Lippia graveolens) by LC-DAD-ESI/MS analysis. Journal of Food Composition and Analysis, 20(5), 361–369. doi: https://doi.org/10.1016/j.jfca.2006.09.005

Liu, W-N., Shi, J., Fu, Y., & Zhao, X-H. (2019). The stability and activity changes of apigenin and luteolin in human cervical cancer hela cells in response to heat treatment and Fe2+/Cu2+ addition. Foods, 8(8), 346. doi: https://doi.org/10.3390/foods8080346

López-Enríquez, I. L., González-Elizondo, S., González-Elizondo, M., Ruacho-González, L., Retana-Rentería, F. I., & Tena-Flores, J. A. (2011). Distribución geográfica de las especies de orégano en Durango. In G. Pérez, M. P. González, G. Alejandre, & M. C. González (Eds.), El orégano mexicano: Estado actual del conocimiento (pp. 23–32). Durango, CIIDIR Instituto Politécnico Nacional: La Casa Editorial de Durango.

Martínez-Hernández, R., Villa-Castorena, M. M., Catalán-Valencia, E. A., & Inzunza-Ibarra, M. A. (2017). Production of oregano (Lippia graveolens Kunth) seedling from seeds in nursery for transplanting. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 23(1), 61–73. doi: https://doi.org/10.5154/r.rchscfa.2015.11.051

Martínez-Rocha, A., Puga, R., Hernández-Sandoval, L., Loarca-Piña, G., & Mendoza, S. (2008). Antioxidant and antimutagenic activities of Mexican oregano (Lippia graveolens Kunth). Plant Foods for Human Nutrition, 63, 1–5. doi: https://doi.org/10.1007/s11130-007-0061-9

Naczk, M., & Shahidib, F. (2004). Extraction and analysis of phenolics in food. Journal of Chromatography A, 1054(1-2), 95–111. doi: 10.1016/j.chroma.2004.08.059

Pérez-Gutiérrez, R. M. (2014). Effect of Mexican oregano (Lippia graveolens Kunth) on streptozotocin induced diabetic mice and its role in regulating carbohydrate metabolic enzymes and their inhibitory effect on the formation of advanced glycation end products. Annual Research & Review in Biology, 4(23), 3470–3491. doi: https://doi.org/10.9734/ARRB/2014/11159

StatSoft Inc. (2007). STATISTICA software, kernel release 7.0. Tulsa, Oklahorma, USA: Author.

Ren, B., Qin, W., Wu, F., Wang, S., Pan, C., Wang, L., …Liang, J. (2016). Apigenin and naringenin regulate glucose and lipid metabolism, and ameliorate vascular dysfunction in type 2 diabetic rats. European Journal of Pharmacology, 773, 13–23. doi: https://doi.org/10.1016/j.ejphar.2016.01.002

Rosales-Castro, M., González-Laredo, R. F., Rivas-Arreola, M. J., & Karchesy, J. (2017). Chemical analysis of polyphenols with antioxidant capacity from Pinus durangensis Bark. Journal of Wood Chemistry and Technology, 37(5), 393–404. doi: https://doi.org/10.1080/02773813.2017.1310898

Rosales-Castro, M., Honorato-Salazar, J. A., Reyes-Navarrete, M. G., & González-Laredo, R. F. (2015). Antioxidant phenolic compounds of ethanolic and aqueous extracts from pink cedar (Acrocarpus fraxinifolius Whight & Arn.) Bark at two tree ages. Journal of Wood Chemistry and Technology, 35(4), 270–279. doi: https://doi.org/10.1080/02773813.2014.946619

Rosero, J. C., Cruz, S., Osorio, C., & Hurtado, N. (2019). Analysis of phenolic composition of byproducts (seeds and peels) of avocado (Persea americana Mill.) cultivated in Colombia. Molecules, 24(17), 3209. doi: https://doi.org/10.3390/molecules 24173209

Sunil, C., & Xu, B. (2019). An insight into the health-promoting effects of taxifolin (dihydroquercetin). Phytochemistry, 166, 112066. doi: https://doi.org/10.1016/j.phytochem.2019.112066

Villegas-Novoa, C., Gallegos-Infante, J. A., González-Laredo, R. F., García-Carrancá, A. M., Herrera-Rocha, K. M., Jacobo-Karam, J. S., …Rocha-Guzmán, N. E. (2019). Acetone effects on Buddleja scordioides polyphenol extraction process and assessment of their cellular antioxidant capacity and anti-inflammatory activity. Medicinal Chemistry Research, 28, 2218–2231. doi: https://doi.org/10.1007/s00044-019-02448-9

Yi-Zhong, C., Sun, M., Xing, J., Luo, Q., & Cork, H. (2006). Structure–radical scavenging activity relationships of phenolic compounds from traditional Chinese medicinal plants. Life Sciences, 78(25), 2872–2888. doi: https://doi.org/10.1016/j.lfs.2005.11.004

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.

Derechos de autor 2021 Revista Chapingo Serie Ciencias Forestales y del Ambiente