Revista Chapingo Serie Ciencias Forestales y del Ambiente
Morphological, physical and chemical analysis of acorns from three oak species from Durango, Mexico
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF

Keywords

Quercus deserticola
Quercus sideroxyla
Quercus rugosa
morphological variation
acorn maturity

How to Cite

Ramírez-Roacho, R. F., Guerrero-Cervantes, M., Prieto-Ruíz, J. A., Bocanegra-Salazar, M., & Chavez-Simental, J. A. (2021). Morphological, physical and chemical analysis of acorns from three oak species from Durango, Mexico. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 27(3), 481–495. https://doi.org/10.5154/r.rchscfa.2020.10.064

##article.highlights##

  • Green and mature acorns of Quercus rugosa, Q. sideroxyla and Q. deserticola were analyzed.
  • Morphology varied according to species; Q. deserticola had larger acorns.
  • Acorn size varied among trees of the same species.
  • Acorn weight was most correlated with crown diameter and diameter at breast height.
  • Acorn chemical composition varied among species and among maturity stages.

Abstract

Introduction: In Mexico, there is a lack of information on morphological, physical and chemical characteristics of acorns of Quercus, which makes it difficult to make decisions on the use that can be made to the fruits.
Objectives: To identify the morphological, physical and chemical characteristics of Quercus rugosa Née, Q. sideroxyla Humb. & Bonpl. and Q. deserticola Trel. acorns.
Materials and methods: From each species, 10 trees were selected and 30 acorns per tree were collected. Mature acorns were characterized morphologically (polar and equatorial diameter, shell weight and total weight) and in physicochemical characterization (moisture, dry matter, ash, crude fiber and protein, ethereal extract and tannins) green and mature acorns were used. Differences among species and among maturity stages were determined with an analysis of variance (P ≤ 0.05) and subsequent Tukey’s test.
Results and discussion: Morphology varied among species and among trees of the same species (P < 0.05); Q. deserticola had the largest acorn size (15.69 mm) and weight (1.94 g), and Q. sideroxyla produced the smallest acorns. Maturity stage and species significantly (P < 0.05) influenced chemical composition; mature acorns had higher content of ethereal extract (8.88 %) and protein (8.40 %). Pearson’s correlation indicated that acorn weight was strongly associated with crown diameter and diameter at breast height.
Conclusion: Significant differences were found in morphology and chemical composition of acorns of each species, although they inhabit sites with similar characteristics.

https://doi.org/10.5154/r.rchscfa.2020.10.064
PDF

References

Alejano, R., Vázquez-Piqué, J., Carevic, F., & Fernández, M. (2011). Do ecological and silvicultural factors influence acorn mass in Holm oak (southwestern Spain). Agroforest System, 83(1), 25‒39. doi: https://doi.org/10.1007/s10457-011-9369-4

Akcan, T., Gökçe, R., Asensio, M., Estévez, M., & Morcuende, D. (2017). Acorn (Quercus spp.) as a novel source of oleic acid and tocopherols for livestock and humans: discrimination of selected species from Mediterranean forest. Journal of Food Science and Technology, 54(10), 3050‒3057. doi: https://doi.org/10.1007/s13197-017-2740-3

Arizaga, S., Martínez-Cruz, J., Salcedo-Cabrales, M., & Bello-González, M. A. (2009). Manual de la biodiversidad de encinos michoacanos. México: Instituto Nacional de Ecología.

Barrientos-Ramírez, L., Vargas-Radillo, J. J., Rodríguez-Rivas, A., Ochoa-Ruíz, H. G., Navarro-Arzate, F., & Zorrilla, J. (2012). Evaluación de las características del fruto de huizache (Acacia farnesiana (L.) Willd.) para su posible uso en curtiduría o alimentación animal. Madera y Bosques, 18(3), 23‒35. doi: https://doi.org/10.21829/myb.2012.183356

Belghith, I. S., Abidi, H., Trabelsi-Ayadi, M., & Chérif, J. K. (2015). Study of physicochemicals characteristics and antioxidant capacity of cork oak acorns (Quercus suber L.) grown in three regions in Tunisia. Journal of Applied Pharmaceutical Science, 5(4), 26‒32. doi: https://doi.org/10.7324/JAPS.2015.50405

Carbonero, M. D., & Fernández-Rebollo, P. (2014). Dehesas de encinas. Influencia de la meteorología en la producción de bellotas. Ecosistemas, 23(2), 55‒63. doi: https://doi.org/10.7818/ECOS.2014.23-2.08

Cunniff, P. (1995). Official methods of analysis of AOAC international (vol. II, 16th ed.). Washington, D. C., U.S.A: Association of Official Analytical Chemist International (AOAC).

de la Paz-Pérez, O. C., & Dávalos-Sotelo, R. (2008). Algunas características anatómicas y tecnológicas de la madera de 24 especies de Quercus (encinos) de México. Madera y Bosques, 14(3), 43‒80. doi: https://doi.org/10.21829/myb.2008.1431206

Gea-Izquierdo, G., Cañellas, I., & Montero, G. (2006). Acorn production in Spanish holm oak woodlands. Investigación Agraria: Sistemas y Recursos Forestales, 15(3), 339‒354. doi: https://doi.org/10.5424/srf/2006153-00976

Gómez, J. M. (2004). Bigger is not always better: conflicting selective pressures on seed size in Quercus ilex. Evolution, 58(1), 71‒80. doi: https://doi.org/10.1554/02-617

González, M. A., & Parrado, R. A. (2010). Diferencias en la producción de frutos del roble Quercus humboldtii Bonpl. en dos bosques andinos de la cordillera oriental colombiana. Revista Colombia Forestal, 13(1), 141‒162. doi: https://doi.org/10.14483/udistrital.jour.colomb.for.2010.1.a06

González-Elizondo, M. S., González-Elizondo, M., Tena-Flores, J. A., Ruacho-González, L., & López-Enríquez, L. (2012). Vegetación de la Sierra Madre Occidental, México: Una síntesis. Acta Botánica Mexicana, 100, 351‒403. Retrieved from http://www.scielo.org.mx/pdf/abm/n100/n100a12.pdf

Howard, C. B. (2008). Estadística paso a paso (3.a ed.). México: Trillas.

Instituto Nacional de Estadística y Geografía. (INEGI). (2020). Uso de suelo y vegetación. Retrieved April 7, 2020 from https://www.inegi.org.mx/temas/usosuelo/

Kamalak, A., Hassan, K. G., Ameen, S. M., Zebari, H. M., Hasan, A. H., & Aslan, F. (2015). Determination of chemical composition, potential nutritive value and methane emission of oak tree (Quercus coccifera) leaves and nuts. Harran Üniv Vet Fak Derg, 4(1), 1‒5. Retrieved from https://dergipark.org.tr/tr/download/article-file/308495

Kilic, U., Boga, M., & Guven, I. (2010). Chemical composition and nutritive value of oak (Quercus robur) nut and leaves. Journal of Applied Animal Research, 38(1), 101‒104. doi: https://doi.org/10.1080/09712119.2010.9707165

Koenig, W. D., & Knops, J. M. H. (2013). Large-scale spatial synchrony and cross-synchrony in acorn production by two California oaks. Ecology, 94(1), 83‒93. doi: https://doi.org/10.1890/12-0940.1

Korus, J., Witczak, M., Ziobro, R., & Juszczak, L. (2015). The influence of acorn flour on rheological properties of gluten-free dough and physical characteristics of the bread. European Food Research and Technology, 240(6), 1135‒1143. doi: https://doi.org/10.1007/s00217-015-2417-y

Makkar, H. P. S. (2003). Quantification of tannins in tree and shrub foliage: A laboratory manual. Amsterdam, Netherland: Springer Netherlands.

Martiník, A., Dobrovolný, L., & Palátová, E. (2014). The growing space and acorn production of Quercus robur. Dendrobiology, 71, 101‒108. doi: https://doi.org/10.12657/denbio.071.010

Mazzola, M. B., Kin, A. G., Morici, E. F., Babinec, F. J., & Tamborini, G. (2008). Efecto del gradiente altitudinal sobre la vegetación de las sierras de Lihue Calel (La Pampa, Argentina). Boletín de la Sociedad Argentina de Botánica, 43(1-2), 103‒119. Retrieved from https://botanicaargentina.org.ar/wp-content/uploads/2017/05/Mazzola.pdf

Media Cybernetics. (2002). Image-Pro Plus 4.5 Application notes. Silver Spring: Author.

Pesendorfer, M. B., Langin, K. M., Cohen, B., Principe, Z., Morrison, S. A., & Sillet, T. S. (2014). Stand structure and acorn production of the Island Scrub oak (Quercus pacifica). Monographs of the Western North American Naturalist, 7(1), 246‒259. doi: https://doi.org/10.3398/042.007.0119

Pourhashemi, M., Dey, D. C., Mehdifar, D., Panahi, P., & Zandebasiri, M. (2018). Evaluating acorn crops in an oak-dominated stand to identify good acorn producers. Austrian Journal of Forest Science, 35(3), 213‒234. Retrieved from https://www.forestscience.at/artikel/2018/3/analyse-der-eichelernte.html

Rababah, T. M., Ereifej, K. I., Al-Mahasneh, M. A., Alhamad, M. N., Alrababah, M. A., & Muhammad, A. H. (2008). The physicochemical composition of acorns for two mediterranean Quercus species. Jordan Journal of Agricultural Sciences, 4(2), 131‒137. Retrieved from https://journals.ju.edu.jo/JJAS/article/view/1011/6054

Rodríguez-Estévez, V. A., García-Martínez, A. C., Mata-Moreno, C., Perea-Muñoz, J. M., & Gómez-Castro, A. G. (2008). Dimensiones y características nutritivas de las bellotas de los Quercus de la dehesa. Revista Archivos de Zootecnia, 57, 1‒12. Retrieved from http://www.uco.es/organiza/servicios/publica/az/php/az.php?idioma_global=0&revisiones=143&codigo=1635

Romahn de la V. C. F., & Ramírez, M. H. (2010). Dendrometría. Texcoco, Estado de México: Universidad Autónoma Chapingo. Retrieved from http://dicifo.chapingo.mx/pdf/publicaciones/dendrometria.pdf

Rubio-Licona, L. E., Romero-Rangel, S., Rojas-Zenteno, E. C., Durán-Díaz A., & Gutiérrez-Guzmán, J. C. (2011). Variación del tamaño de frutos y semillas en siete especies de encino (Quercus, Fagaceae). Polibotánica, 32, 135‒151. Retrieved from http://www.scielo.org.mx/pdf/polib/n32/n32a8.pdf

Sánchez-Burgos, J. A., Ramírez-Mares, M. V., Larrosa, M. M., Gallegos-Infante, J. A., González-Laredo, R. F., Medina-Torres, L., & Rocha-Guzmán, N. E. (2013). Antioxidant, antimicrobial, antitopoisomerase and gastroprotective effect of herbal infusions from four Quercus species. Industrial Crops and Products, 42, 57‒62. doi: https://doi.org/10.1016/j.indcrop.2012.05.017

Shi, W., Villar-Salvador, P., Li, G., & Jiang, X. (2019). Acorn size is more important than nursery fertilization for out planting performance of Quercus variabilis container seedlings. Annales of Forest Science, 76, 22. doi: https://doi.org/10.1007/s13595-018-0785-8

Smith, S., Naylor, R. J., Knowles, E. J., Mair, T. S., Cahalan, S. D., Fews, D., & Dunkel, B. (2015). Suspected acorn toxicity in nine horses. Equine Veterinary Journal, 47(5), 568‒572. doi: https://doi.org/10.1111/evj.12306

Statistical Analysis System (SAS). 2002. SAS/STAT computer software. User’s guide. Release 9.0. Cary, NC, USA: Author.

Uribe-Salas, M. D., Rocha-Ramírez, V., Gregorio-Cipriano, R., Fernández-Pavia, S. P., & Alvarado-Rosales, D. (2019). Declinación y muerte de los encinos (Quercus spp.) en México, estado actual del conocimiento. Tecnociencia Chihuahua, 13(1), 50‒59. Retrieved from https://vocero.uach.mx/index.php/tecnociencia/article/view/325/294

Valero-Galván, J., Jorrín-Novo, J. J., Gómez-Cabrera, A., Ariza, D., García-Olmo, J., & Navarro-Cerrillo, R. M. (2011). Population variability based on the morphometry and chemical composition of the acorn in Holm oak (Quercus ilex subsp. ballota [Desf.] Samp.) European Journal of Forest Research, 131(4), 893‒904. doi: https://doi.org/10.1007/s10342-011-0563-8

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2021 Revista Chapingo Serie Ciencias Forestales y del Ambiente