Revista Chapingo Serie Ciencias Forestales y del Ambiente
Growth potential of Carapa guianensis (Aubl.) in Tumaco, Colombia
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF

Keywords

Allometry
andiroba
diameter growth
height estimation
tropical forest

How to Cite

Bacca-Acosta, P. P., Zuluaga-Peláez, J. J., Castaño-Colorado, Álvaro A., & Ardila-Fernández, A. F. (2021). Growth potential of Carapa guianensis (Aubl.) in Tumaco, Colombia. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 27(3), 401–412. https://doi.org/10.5154/r.rchscfa.2020.09.062

##article.highlights##

  • An allometric equation was fitted to estimate the height of Carapa guianensis.
  • At 60 months of age, C. guianensis had a survival rate of 70 to 87 %.
  • Mean annual increment in diameter and height was 2.9 cm∙yr-1 and 2.3 m∙yr-1, respectively.
  • C. guianensis is probably reaching the minimum harvestable diameter (40 cm) at an early age.
  • C. guianensis has high potential for forest development in the Pacific region of Nariño.

Abstract

Introduction: Determining growth and yield potential of a forest species is a requirement for management planning. One of the important forest species for the Tumaco region is Carapa guianensis (Aubl.), due to its high timber potential.
Objective: To evaluate the growth potential of the native species C. guianensis (andiroba or tangare) in Tumaco, Colombia.
Materials and methods: Permanent plots were established in which tree measurement variables were recorded for 90 even-aged individuals for 60 months. Mean annual increments were estimated and an allometric equation was fitted to estimate height from the diameter at 1.30 m (DBH).
Results and discussion: At 60 months of age, C. guianensis trees showed survival between 70 and 87 %. Mean annual increase in diameter and height was 2.9 cm∙yr-1 and 2.3 cm∙yr-1, respectively. By fitting linear and nonlinear models, we determine the following allometric equation . The species showed rapid diameter growth compared to other regions where it can take more than 50 years to reach a minimum usable diameter of 40 cm.
Conclusion: Based on mean annual growth increments, and under the agroecological conditions of the region, C. guianensis is expected to reach maturity at an early age (before 50 years of age).

https://doi.org/10.5154/r.rchscfa.2020.09.062
PDF

References

Abarca-Valverde, P., Meza-Picado, V., & Méndez-Gamboa, J. (2020). Evaluación de tratamientos silviculturales en la sostenibilidad de bosques tropicales en la Región Huetar Norte, Costa Rica. Revista de Ciencias Ambientales, 54(1), 140–166. doi: https://doi.org/10.15359/rca.54-1.8

Ahmadi, K., Alavi, S. J., Kouchaksaraei, M. T., & Aertsen, W. (2013). Non-linear height-diameter models for oriental beech (Fagus orientalis Lipsky) in the Hyrcanian forests, Iran. Biotechnology, Agronomy and Society and Environment, 17(3), 431–440. Retrieved from https://www.researchgate.net/publication/288838252_Non-linear_height-diameter_models_for_oriental_beech_Fagus_orientalis_Lipsky_in_the_Hyrcanian_forests_Iran

Bacca, P., Zuluaga, J., Perez, J., Burbano, D., & Palacio, M. (2020). Evaluation of pre-germination treatments in Carapa guianensis Aubl. Revista de Ciencias Agrícolas, 37(2), 56–66. doi: https://doi.org/10.22267/rcia.203702.138

Barbosa, R., Ramírez-Narváez, P., Fearnside, P., Villacorta, C., & Carvalho, L. (2019). Allometric models to estimate tree height in northern amazonian ecotone forests. Acta Amazonica, 49(2), 81–90. doi: https://doi.org/10.1590/1809-4392201801642

Bauch, J., & Dünisch, O. (2000). Comparison of growth dynamics and wood characteristics of plantation-grown and primary forest Carapa guianensis in Central Amazonia. IAWA Journal, 21(3), 321–333. doi: https://doi.org/10.1163/22941932-90000250

Casal-Ángeles, L. F., Vásquez-García, I., Cetina-Alcalá, V. M., & Campos-Bolaños, R. (2016). Evaluacion de plantaciones forestales en tres comunidades de la Mixteca Alta Oaxaqueña. Agro Productividad, 9(2), 12–19. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&db=fap&AN=114248571&site=ehost-live

Cancino, J. (2006). Dendrometría básica. Chile: Universidad de Concepción.

Cárdenas, L. M. (2014). Biomasa y crecimiento de especies forestales nativas. Revisión de información disponible para Colombia. Colombia: Fundación Natura.

Cordero, J., & Boshier, D. (2003). Árboles de Centroamérica. Un manual para extensionistas. Costa Rica: IICA-CATIE. Retrieved from http://repositorio.bibliotecaorton.catie.ac.cr/handle/11554/9730

Dávila, F. C. (2003). Evalución del crecimiento inicial de 30 especies forestales plantadas a campo abierto en Requena, Perú. Perú: Universidad de la Amazonia Peruana.

Holdridge, L. (1982). Ecología basada en zonas de vida. Costa Rica: IICA.

Larjavaara, M., & Muller-Landau, H. C. (2013). Measuring tree height: A quantitative comparison of two common field methods in a moist tropical forest. Methods in Ecology and Evolution, 4(9), 793–801. doi: https://doi.org/10.1111/2041-210X.12071

McLean, P. J., Zhang, T., Bardet, S., Beauchêne, J., Thibaut, A., Clair, B., & Thibaut, B. (2011). The decreasing radial wood stiffness pattern of some tropical trees growing in the primary forest is reversed and increases when they are grown in a plantation. Annals of Forest Science, 68(4), 681–688. doi: https://doi.org/10.1007/s13595-011-0085-z

Mensah, S., Pienaar, O. L., Kunneke, A., du Toit, B., Seydack, A., Uhl, E., Pretzsch, H., & Seifert, T. (2018). Height – diameter allometry in South Africa’s indigenous high forests: Assessing generic models performance and function forms. Forest Ecology and Management, 410(2018), 1–11. doi: https://doi.org/10.1016/j.foreco.2017.12.030

Mensah, S., Veldtman, R., & Seifert, T. (2017). Allometric models for height and aboveground biomass of dominant tree species in South African Mistbelt forests. Southern Forests, 79(1), 19–30. doi: https://doi.org/10.2989/20702620.2016.1225187

Misir, N. (2010). Generalized height-diameter models for Populus tremula L. stands. African Journal of Biotechnology, 9(28). Retrieved from https://www.ajol.info/index.php/ajb/article/view/82660

Paguada, D. R. (2015). Dinámica del crecimiento de Swetenia macrophylla y Carapa guianensis en bosques de la Región Autónoma del Caribe Norte de Nicaragua a través del enfoque dendroecológico: Una contribución al manejo forestal sostenible. Costa Rica: CATIE.

Picard, N., Saint-André, L., & Henry, M. (2012). Manual de construcción de ecuaciones alométricas para estimar el volumen y la biomasa de los árboles. Francia-Italia: CIRAD-FAO. Retrieved from http://www.fao.org/docrep/018/i3058s/i3058s.pdf

Reyes, R., Rodríguez, N., Peña, E., & Bastidas, S. (2008). Crecimiento en vivero de materiales comerciales de palma aceitera (Elaeis guineensis Jacq.) en Tumaco, Colombia. Ciencia y Tecnología Agropecuaria, 9(2),12–18. doi: https://doi.org/10.21930/rcta.vol16_num2_art:370

Sánchez, G., F., & Gutiérrez, S. J. L. (2020). La alometría, una ley de potencias ubicua en la estructura de los seres vivos. Interdisciplina, 8(20), 11–22. doi: https://doi.org/10.22201/ceiich.24485705e.2020.20.71181

SAS Institute Inc. (2013). Statistical Analysis System, versión 4. Cary, NC, USA: Author.

Sharma, R. P., & Breidenbach, J. (2015). Modeling height-diameter relationships for Norway spruce, Scots pine, and downy birch using Norwegian national forest inventory data. Forest Science and Technology, 11(1), 44–53. doi: https://doi.org/10.1080/21580103.2014.957354

Suatunce, P., Díazl, T. G., & García, L. (2009). Crecimiento de especies arbóreas tropicales en la colección de la Universidad Técnica Estatal de Quevedo. Ciencia y Tecnología, 2(2), 21–27. doi: https://doi.org/10.18779/cyt.v2i2.37

Tonini, H., Arco-Verde, M. F., & Sá, S. P. P. (2005). Dendrometria de espécies nativas em plantios homogêneos no estado de Roraima: andiroba (Carapa guianensis Aubl), castanha-do-Brasil (Bertholletia excelsa Bonpl.), ipê-roxo (Tabebuia avellanedae Lorentz ex Griseb) e jatobá (Hymenaea courbaril L.). Acta Amazonica, 35(3), 353–362. doi: https://doi.org/10.1590/s0044-59672005000300008

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2021 Revista Chapingo Serie Ciencias Forestales y del Ambiente