Revista Chapingo Serie Ciencias Forestales y del Ambiente
Effects of the growth regulators for the induction of somatic embryos from explants in an endemic and threatened Echinocactus parryi Engelm.
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF

Keywords

growth regulators
kinetin
organogenesis
somatic embryos
histological analysis

How to Cite

García-González, D. A., Santos-Díaz, M. del S., Flores-Margez, J. P., & Osuna-Ávila, P. (2021). Effects of the growth regulators for the induction of somatic embryos from explants in an endemic and threatened Echinocactus parryi Engelm. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 27(3), 431–447. https://doi.org/10.5154/r.rchscfa.2020.08.053

##article.highlights##

  • The growth regulators for the induction of somatic embryos of Echinocactus parryi were evaluated.
  • 2, 4-D was involved in inducing globular embryo in mature seeds and seedlings explants.
  • Kinetin (0.5 mg∙L -1 ) induced all the somatic embryo phases in green compact callus explant.
  • The compact callus explants were the more efficient to induce 19.2 somatic embryos per explant.
  • Other endogenous phytohormones likely contributed to the torpedo phase that did not germinate.

Abstract

Introduction: The list of threatened species is enhancing and needs to be revised by integrating plant tissue culture tools with conventional techniques that support the appropriate management of these species.
Objective: To assess the effects of the growth regulators for the induction of somatic embryos from mature seeds, shoots, and compact green callus of Echinocactus parryi Engelm. and the histological analysis of the embryogenic structures.
Materials and methods: A completely randomized design was utilized to evaluate three types of explants (apical, medium, and basal) cultured on basal Murashige & Skoog media (MS) with different growth regulators concentrations (2, 4-D [dichlorophenoxy acetic acid], BAP [6-benzylaminopurine] and kinetin, at four levels: 0.5, 1, 1.5, and 2 mg∙L -1 ). Histological analysis of the embryogenic structures was performed.
Results and discussion: The 2, 4-D induced both embryogenic and organogenic callus from seeds and shoot explants. The globular stage did not evolve to their maturity, presumably because of 2, 4-D accumulation. The compact callus explants were the more efficient to induce 19.2 somatic embryos per explant when they were cultured in the medium with 0.5 mg∙L -1 kinetin. However, the latest phases did not germinate, probably due to abnormalities generated by genetic and epigenetic changes in the DNA that can cause abnormal somatic embryos. The histology image demonstrated that the globular and torpedo structures were visible under a microscope showing stained nucleus and numerous starch grains.
Conclusions: E. parryi is a species that can produce a high number of embryogenic structures, which represents a great potential to grow massive plants.

https://doi.org/10.5154/r.rchscfa.2020.08.053
PDF

References

Al-Dein, E., Al-Ramamneh, E., Sriskandarajah S., & Serek, M. (2006). Plant regeneration via somatic embryogenesis in Schlumbergera truncata. Plant Cell, Tissue and Organ Culture, 84, 333‒342. doi: https://doi.org/10.1007/s11240-005-9042-6

Alvez, B., & Oropeza, M. (2015). Efecto de dicamba y de ácido 2,4 diclorofenoxiacético sobre la embriogénesis somática en caña de azúcar. Revista Colombiana de Biotecnología, 17(2), 85‒94. doi: https://doi.org/10.15446/rev.colomb.biote.v17n2.54280

Anzidei, A., Bennici, A., Schiff, C. T., & Mori, B. (2000). Organogesis and somatic embryogenesis in Foeniculum vulgare: histological observations of developing embryogenic callus. Plant Cell, Tissue and Organ Culture, 61, 69‒79. doi: https://doi.org/10.1023/A:1006454702620

Asad, M., Ahmed, N., Sohail, A., Sher, J., Tanveer, B., Hadi, F., … Din, S. (2019). In vitro callus induction and plantlet regeneration of sesame (Sesamum indicum L.). Pure and Applied Biology, 8(2), 1307–1313. doi: https://doi.org/10.19045/bspab.2019.80073

Baskaran, P., Kumari, A., Naidoo, D., & Van Staden, J. (2016). In vitro propagation and ultrastructural studies of somatic embryogenesis of Ledebouria ovatifolia. In Vitro Cellular and Developmental Biology - Plant, 52, 283‒292. doi: https://doi.org/10.1007/s11627-016-9762-9

Baskaran, P., & Van Staden, J. (2017). Ultrastructure of somatic embryo development and plant propagation for Lachenalia montana. South African Journal of Botany, 109, 269‒274. doi: https://doi.org/10.1016/j.sajb.2017.01.006

Bednarek, P. T., & Orlowska, R. (2020). Plant tissue culture environment as a switch-key of (epi) genetic changes. Plant Cell, Tissue and Organ Culture, 140(2), 245‒257. doi: https://doi.org/10.1007/s11240-019-01724-1

Bouamama, B., Ben, A., Zoghlami, N., Zemni, H., Mliki, A., & Ghorbel, A. (2011). Somatic embryogenesis and plantlet regeneration from immature anthers of Opuntia ficus-indica. Journal of Horticultural Science & Biotechnology, 86(4), 313‒318. doi: https://doi.org/10.1080/14620316.2011.11512766

Brand A., Quimbaya, M., Tohme, J., & Chavarriaga-Aguirre, P. (2019). Arabidopsis LEC1 and LEC2 orthologous genes are key regulators of somatic embryogenesis in cassava. Frontiers in Plant Science, 10, 1‒14. doi: https://doi.org/10.3389/fpls.2019.00673

Correia, S., Cunha, A. E., Salgueiro, L., & Canhoto, J. M. (2012). Somatic embryogenesis in tamarillo (Cyphomandra betacea): approaches to increase efficiency of embryo formation and plant development. Plant Cell Tissue an Organ Culture, 109, 143‒152. doi: https://doi.org/10.1007/s11240-011-0082-9

Cunha, B. P. M., Teixeira, G. H., Gomes, S. M., Vasconcelos, F. S. C., Batista, T. J., & Schjerwinski-Pereira, J. E. (2018). Histology of somatic embryogenesis in Coffea arabica L. Biologia, 73,1255‒1265. doi: https://doi.org/10.2478/s11756-018-0131-5

Debbrama, R., Sudhakar, D., Kumar, K, K., & Soorianathasundaram, K. (2019). Morphological and ultrastructure of developmental stages of somatic embryos of popular banana cultivars. International Journal of Current Microbiology and Applied Sciences, 8, 1676–1683. doi: https://doi.org/10.20546/ijcmas.2019.806.200

Garcia, C., Furtado, A. A. A., Costa, M., Britto, D., Valle, R., Royaert, S., & Mrelli, J. P. (2019). Abnormalities in somatic embryogenesis caused by 2,4-D: an overview. Plant Cell, Tissue and Organ Culture, 137, 193–212. doi: https://doi.org/10.1007/s11240-019-01569-8

García-González, D. A., Santos-Díaz, M. del S., Flores-Margez, J. P., & Osuna-Avila, P. (2020). Influencia del Ca2+, pH, agar y reguladores de crecimiento en la propagación in vitro de Echinocactus parryi (Engelm). Terra Latinoamericana, 38(3), 489‒498. doi: https://doi.org/10.28940/terra.v38i3.734

Hui-Ju, S., Jen-Tsung, C., Hsiao-Hang, C., & Wei-Chin, C. (2018). Plant regeneration via direct somatic embryogenesis from leaf explants of Tolumnia Louise elmore ‘Elsa’. Botanical Studies, 59(4), 1‒7. doi: https://doi.org/10.1186/s40529-018-0220-3

IBM Corp. (2017). IBM SPSS statistics for windows, version 25.0. Armonk, NY: Author.

Infante, R. (1992). In vitro axillary shoot proliferation and somatic embryogenesis of yellow pitaya Mediocactus coccineus (Salm-Dyck). Plant Cell, Tissue and Organ Culture, 31, 155–159. doi: https://doi.org/10.1007/BF00037700

Jhong, K. S., Pintado, C. R., & Jiménez, D. J. (2019). Induccion de embriogenesis somática a partir de explantes foliares en tres variedades de café. Scientia Agropecuaria, 10(2), 259‒264. doi: https://doi.org/10.17268/sci.agropecu.2019.02.11

Kaaniche-Elloumi, N., Jeddi, E., Mahmoud, K. B., Chakroun, A., & Jemmali, A. (2015). Gibberelic acid application and its incidence on in vitro somatic embryogenesis and fruit parthenocarpy in an apomictic cactus pear (Opuntia ficus-indica (L.) Mill.) clone. Acta Horticulturae, 1067, 225‒230. doi: https://doi.org/10.17660/ActaHortic.2015.1067.31

Lema-Ruminska, J. (2011). Flow cytometric analysis of somatic embryos, shoots and calli of the cactus Copiapoa tenuissima Ritt. forma monstruosa. Plant Cell Tissue and Organ Culture, 106, 531‒535. doi: https://doi.org/10.1007/s11240-011-9941-7

Lema-Rumińska, J., Goncerzewicz, K., & Gabriel, M. (2013). Influence of abscisic acid and sucrose on somatic embryogenesis in cactus Copiapoa tenuissima Ritt. forma mostruosa. The Scientific World Journal, Article ID 513985. doi: https://doi.org/10.1155/2013/513985

Lincy, A. K., Remashree, A. B., & Sasikumar, B. (2009). Indirect and direct somatic embryogenesis from aerial stem explants of ginger (Zingiber officinale Rosc.). Acta Botanica Croatica, 68(1), 93–103. Retrieved from https://www.researchgate.net/publication/27219463_Indirect_and_direct_somatic_embryogenesis_from_aerial_stem_explants_of_ginger_Zingiber_officinale_Rosc

Linhares, F., Ferreira, A., Fernandes, F., Barbeta, P., Facó, O., & Paiva, F, A. (2006). Somatic embryogenesis and plant regeneration in Opuntia ficus-indica (L.) Mill. (Cactaceae). Scientia Horticulturae, 108(1), 15‒21. doi: https://doi.org/10.1016/j.scienta.2005.12.007

Moebius-Goldammer, K. G., Mata-Rosas, M., & Chávez-Avila, V. M. (2003). Organogenesis and somatic embryogenesis in Ariocarpus kotschoubeyanus (Lem.) K. Schum. (Cactaceae), an endemic and endangered Mexican species. In Vitro Cellular & Developmental Biology-Plant, 39, 388–393. doi: https://doi.org/10.1079/IVP2003427

Manokari, M., Latha, R., Priyadharshini, S., Jogam, P., & Shekhawat, A. S. (2020). Short-term cold storage of encapsulated somatic embryos and retrieval of plantlets in grey orchid (Vanda tessellata (Roxb.) Hook. ex G. Don). Plant Cell, Tissue and Organ Culture, 44, 171–183. doi: https://doi.org/10.1007/s11240-020-01899-y

Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physilogia Plantarum, 15, 473‒497. doi: https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

Nugent, G., Chandler, S. F., Whiteman, P., & Stevenson, T. W. (2001). Somatic embryogenesis in Eucalyptus globulus. Plant Cell, Tissue and Organ Culture, 67, 85–88. doi: https://doi.org/10.1023/A:1011691110515

Osuna, P., & Barrow, J. R. (2004). Regeneration of black grama (Bouteloua eriopoda Torr. Torr.) plants via somatic embryogenesis. In Vitro Cellular and Developmental Biology- Plant, 40, 299‒302. doi: https://doi.org/10.1079/IVP2003533

Pedda, K. D., Sai, K. N., Suneetha, P., Bramareswara, R. K., Naresh, K. M., & Krishna, M. S. R. (2019). Multiple shoot regeneration in seed-derived immature leaflet explants of red dragon fruit (Hylocereus costaricensis). Research Journal of Pharmacy and Technology, 12(4), 1491–1494. doi: https://doi.org/10.5958/0974-360X.2019.00246.4

Pinheiro, S., Soares, A., & Arnholdt-Schmitt, B. (2001). Studies on the induction of embryogenic globular structures in Opuntia ficus-indica. Journal of the Professional Association for Cactus Development, 4, 66‒74. Retrieved from https://jpacd.org/jpacd/article/view/136

Quiroz-Figueroa, F. R., Rojas-Herrera, R., Galaz-Avalos, R. M., & Loyola-Vargas, V. M. (2006). Embryo production through somatic embryogenesis can be used to study cell differentiation in plants. Plant Cell, Tissue and Organ Culture, 86, 285–301. doi: https://doi.org/10.1007/s11240-006-9139-6

Quiñónez, M. M., Enríquez, A. I. D., Flores, M. J. P., Palacios, R. K., Olivas, S. M., Garza, O. F., … Nájera, M. J. (2018). Comunidades vegetales en suelo de ecosistema semiárido y su realcion con hongos micorrízicos. Terra Latinoamerica, 36(4), 381‒391. doi: https://doi.org/10.28940/terra.v36i4.401

Rose, J. R. (2019). Somatic embryogenesis in the Medicago truncatula model: cellular and molecular mechanisms. Frontiers in Plant Science, 10, 1‒14. doi: https://doi.org/10.3389/fpls.2019.00267

Rugkhla, A., & Jones, M. G. K. (1998). Somatic embyrogenesis and plantlet formation in Santalum album and S. spicatum. Journal of Experimental Botany, 49(320), 563–571. doi: https://doi.org/10.1093/jxb/49.320.563

Salma, U., Kundu, S., Ali, M. N., & Mandal, N. (2019). Somatic embryogenesis-mediated plant regeneration of Eclipta alba (L.) Hask. and its conservation through synthetic seed technology. Acta Physiologiae Plantarum, 41, Article 103. doi: https://doi.org/10.1007/s11738-019-2898-6

Santos-Díaz, M. S., Pérez-Molphe, E., Ramírez-Malagón, R., Núñez-Palenius, H. G., & Ochoa-Alejo, N. (2011). Mexican threatened cacti: Current status and strategies for their conservation. Species Diversity and Extinction, 59(1), 1‒60. Retrieved from https://www.researchgate.net/publication/285997331_Mexican_threatened_cacti_Current_status_and_strategies_for_their_conservation

Saptari, R. T., & Susila, H. (2019). Data mining study of hormone biosynthesis gene expression reveals new aspects of somatic embryogenesis regulation. In Vitro Cellular and Developmental Biology - Plant, 55, 139–152. doi: https://doi.org/10.1007/s11627-018-9947-5

Secretaría del Medio Ambiente y Recursos Naturales (SEMARNAT). (2010). NORMA Oficial Mexicana NOM-059-SEMARNAT-2010. Protección ambiental-Especies nativas de México de flora y fauna silvestres-Categorías de riesgo y especificaciones para su inclusión, exclusión o cambio-Lista de especies en riesgo. México: Diario Oficial de la Federación. Retrieved from http://dof.gob.mx/nota_detalle.php?codigo=5173091&fecha=30/03/2020

Silveira, V., De Vita, A. M., Macedo, A. F., Ribeiro, M. F., Segal. E. I., & Santa-Catarina, C. (2013). Morphological and polyamine content changes in embryogenic and non-embryogenic callus of sugarcane. Plant Cell, Tissue and Organ Culture, 114, 351–364. doi: https://doi.org/10.1007/s11240-013-0330-2

Stuppy, W., & Nagl, W. (1992). Regeneration and propagation of Ariocarpus retusus Scheidw. (Cactaceae) via somatic embryogenesis. Bradleya, 10, 85–88. doi: https://doi.org/10.25223/brad.n10.1992.a7

Torres-Silva, G., Resende, S. V., Lima-Brito, A., Bezerra, H. B., de Santana, J. R. F., & Schnadelbach, A. S. (2018). In vitro shoot production, morphological alterations and genetic instability of Melocactus glaucescens (Cactaceae), an endangered species endemic to eastern Brazil. Sotuh African Journal of Botany, 115, 100–107. doi: https://doi.org/10.1016/j.sajb.2018.01.001

Villanueva, R. M. (2016). Germinación de tres especies de cactáceas endémicas de México en condiciones asépticas. Zonas Aridas, 16(1), 1–16. doi: https://doi.org/10.21704/za.v16i1.633

Vondrákova, Z., Eliásová, K., Fischerová, L., & Vágner, M. (2011). The role of auxins in somatic embryogenesis of Abies alba. Central European Journal of Biology, 61(4), 587–596. doi: https://doi.org/10.2478/s11535-011-0035-7

Wakhlu, A. K., & Bhau, B. S. (2000). Callus formation and plant regeneration from tubercles of Coryphantha elephantidens (Lem.) Lem. In Vitro Cellular and Developmental Biology - Plant, 36, 211–214. doi: https://doi.org/10.1007/s11627-000-0039-x

Wu, G. Y., Wei, X. L., Wang, X., & Wei, Y. (2020). Induction of somatic embryogenesis in different explants from Ormosia henryi Prain. Plant Cell, Tissue and Organ Culture, 142, 229–240. doi: https://doi.org/10.1007/s11240-020-01822-5

Yang, K., Wang, L., Le, J., & Dong, J. (2020). Cell polarity: Regulators and mechanisms in plants. Journal of Integrative Plant Biology, 62(1),132–147. doi: https://doi.org/10.1111/jipb.12904

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2021 Revista Chapingo Serie Ciencias Forestales y del Ambiente