Revista Chapingo Serie Ciencias Forestales y del Ambiente
Potential areas for silvopastoral systems based on the ecological niche of two forage crops and three species of conifers
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF

Keywords

Chloris gayana
Eragrostis curvula
Pinus devoniana
Pinus montezumae
Pinus lawsonii

How to Cite

Sáenz-Ceja, J. E., Sáenz-Reyes, J. T., Castillo-Quiroz, D., Castillo-Reyes, F., Muñoz-Flores, H. J., & Rueda-Sánchez, A. . (2021). Potential areas for silvopastoral systems based on the ecological niche of two forage crops and three species of conifers. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 27(2), 289–308. https://doi.org/10.5154/r.rchscfa.2020.07.048

##article.highlights##

  • Ecological niche modeling allows identifying areas to establish silvopastoral systems.
  • The ecological niche of Chloris gayana, Eragrostis curvula, Pinus devoniana, P. lawsonii, and P. montezumae was modeled.
  • Central and southern Mexico has a high potential for silvopastoral systems.
  • Agricultural areas have a larger potential area compared to forest areas.
  • Pinus devoniana had the greatest potential area to be intercropped with C. gayana and E. curvula.

Abstract

Introduction: Ecological niche modeling is a fundamental tool to know the areas suitable for the establishment of silvopastoral systems, based on the environmental requirements of the species.
Objectives: To model the ecological niche of the forage species Chloris gayana Kunth and Eragrostis curvula (Schrad.) Nees, and the conifers Pinus devoniana Lindley, Pinus lawsonii Roezl ex Gordon and Pinus montezumae Lambert and to identify potential areas for silvopastoral systems.
Materials and methods: The ecological niche was modeled based on data from georeferenced collection sites in Mexico and 23 environmental variables. Subsequently, areas were identified and the extent, where forage species converge with conifers in both agricultural and forest areas, was estimated.
Results and discussion: Potential areas for silvopastoral systems with the five species were found mainly in the Neovolcanic Axis and the Sierra Madre del Sur, with a greater area suitable for agricultural areas compared to forestry areas. The ecological niche models had high predictive capacity with an area under the curve values greater than 0.93. Altitude and annual temperature range were the most important variables. Pinus devoniana had the largest potential area to be intercropped with C. gayana and E. curvula.
Conclusions: Mexico has the potential to establish silvopastoral systems with the species understudy in the center and south of the country, which could contribute to decreasing soil degradation, provide forage for livestock and maintain tree cover for agricultural and forest areas.

https://doi.org/10.5154/r.rchscfa.2020.07.048
PDF

References

Aceves-Rangel, L. D., Méndez-González, J., García-Aranda, M. A., & Nájera-Luna, J. A. (2018). Potential distribution of 20 pine species in Mexico. Agrociencia, 52(7), 1043‒1057. Retrieved from https://www.colpos.mx/agrocien/Bimestral/2018/oct-nov/art-9.pdf

Ávila-Ramírez, D. N., Lara-Bueno, A., Krishnamurthy, L., Espinosa-Aviña, F., Escutia-Sánchez, J. A., & Uribe-Gómez, M. (2019). Seasonal silvopastoral system with sheep in pine-oak forest: effects on soil and vegetation. Agroforestry Systems, 93, 1637‒1645. doi: https://doi.org/10.1007/s10457-019-00379-3

Beltrán-López, S., García-Díaz, C. A., Loredo-Osti, C., Urrutia-Morales, J., Hernández-Alatorre, J. A., & Gámez-Vázquez, H. G. (2018). “Llorón Imperial”, Eragrostis curvula (Schrad) Nees, variedad de pasto para zonas áridas y semiáridas. Revista Mexicana de Ciencias Pecuarias, 9(2), 400‒407. doi: https://doi.org/10.22319/rmcp.v9i2.4532

Bolaños-González, M. A., Paz-Pellat, F., Cruz-Gaistardo, C. O., Argumedo-Espinoza, J. A., Romero-Benítez, V. M., & de la Cruz-Cabrera, J. C. (2016). Mapa de erosión de los suelos de México y posibles implicaciones en el almacenamiento de carbono orgánico del suelo. Terra Latinoamericana, 34(3), 271‒288. Retrieved from https://www.terralatinoamericana.org.mx/index.php/terra/article/view/149

Casanova-Lugo, F., Ramírez-Avilés, L., Parsons, D., Caamal-Maldonado, A., Piñeiro-Vázquez, A. T., & Díaz-Echeverría, V. (2015). Environmental services from tropical agroforestry systems. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 22(3), 269‒284. doi: https://doi.org/10.5154/r.rchscfa.2015.06.029

Centre for Agricultural Bioscience International (CABI). (2002). Pines of silvicultural importance. Wallingford, Inglaterra: Author.

Cotler, H., Corona, J. A., & Galeana-Pizaña, J. M. (2020). Erosión de suelos y carencia alimentaria en México: Una primera aproximación. Investigaciones Geográficas, 101, e59976. doi: https://doi.org/10.14350/rig.59976

Cruz-Cárdenas, G., López-Mata, L., Silva, J. T., Bernal-Santana, N., Estrada-Godoy, F., & López-Sandoval, J. A. (2016). Potential distribution model of Pinaceae species under climate change scenarios in Michoacan. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 22(2), 135‒148. doi: https://doi.org/10.5154/r.rchscfa.2015.06.027

Esqueda-Coronado, M. H., & Carrillo-Romo, R. L. (2012). Producción de forraje y carne en pastizales resembrados con gramíneas introducidas. Revista Mexicana de Ciencias Pecuarias, 39(2), 139‒152. Retrieved from https://www.redalyc.org/pdf/613/61339205.pdf

Farjon, A., Pérez de la Rosa, J. A., & Styles, T. B. (1997). Field guide of the pines of Mexico and Central America. Oxford, Inglaterra: Kew Publishing.

Fuentes-Hernández, A., Mendoza-Orozco, M., Ríos-Casanova, L., Soler-Aburto, A., Muñoz-Iniestra, D., & Godínez-Álvarez, H. (2019). Impacto de la agricultura y ganadería sobre el bosque tropical seco de Zirándaro, Guerrero: Una evaluación con indicadores ecológicos. Botanical Sciences, 97(2), 148‒154. doi: https://doi.org/10.17129/botsci.2043

Ghebrehiwot, H. M., Fynn, R. W. S., Morris, C. D., & Kirkman, K. P. (2006). Shoot and root biomass allocation and competitive hierarchies of four South African grass species on light, soil resources and cutting gradients. African Journal of Range and Forage Science, 23(2), 113‒122. doi: https://doi.org/10.2989/10220110609485894

Global Biodiversity Information Facility (GBIF). (2018). Retrieved December 20, 2019 from https://www.gbif.org/occurrence/search?country=MX&taxon_key=2684241

Gómez-Romero, M., Soto-Correa, J. C., Blanco-García, J. A., Sáenz-Romero, C., Villegas, J., & Lindig-Cisneros, R. (2012). Testing of pine species for restoration of degraded sites. Agrociencia, 46, 795‒807. Retrieved from https://www.colpos.mx/agrocien/Bimestral/2012/nov-dic/art-5.pdf

Guevara-Escobar, A., Cervantes-Jiménez, M., Suzán-Azpiri, H., González-Sosa, E., & Saavedra, I. (2012). Producción de pasto Rhodes en una plantación de eucalipto. Agrociencia, 46(2), 175‒188. Retrieved from http://www.scielo.org.mx/pdf/agro/v46n2/v46n2a7.pdf

Guisan, A., & Zimmermann, N. E. (2000). Predictive habitat distribution models in ecology. Ecological Modelling, 135(2-3), 147‒186. doi: https://doi.org/10.1016/S0304-3800(00)00354-9

Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25(15), 1965‒1978. doi: 10.1002/joc.1276

Hirzel, A. H., Hausser, J., Chessel, D., & Perrin, N. (2002). Ecological-niche factor analysis: how to compute habitat-suitability maps without absence data? Ecology, 83(7), 2027‒2036. doi: 10.1890/0012-9658(2002)083[2027:ENFAHT]2.0.CO;2

Imaz, J. A., Giménez, D. O., Grimoldi, A. A., & Striker, G. G. (2012). The effects of submergence on anatomical, morphological and biomass allocation responses of tropical grasses Chloris gayana and Panicum coloratum at seedling stage. Crop and Pasture Science, 63, 1145‒1155. doi: https://doi.org/10.1071/CP12335

Instituto Nacional de Estadística y Geografía (INEGI). (2014). Retrieved November 15, 2019 from https://www.inegi.org.mx/temas/edafologia/#Descargas

Instituto Nacional de Estadística y Geografía (INEGI). (2017). Retrieved November 15, 2019 from https://www.inegi.org.mx/temas/usosuelo/#Descargas

Lastiri-Hernández, M. A., Cruz-Cárdenas, G., Álvarez-Bernal, D., Vázquez-Sánchez, M., & Bermúdez-Torres, K. (2020). Ecological niche modeling for halophyte species with possible anthropogenic use in agricultural saline soils. Environmental Modeling and Assessment, 25, 429–440. doi: https://doi.org/10.1007/s10666-020-09690-1

McKenzie, D., Peterson, D. W., & Peterson, D. L. (2003). Modelling conifer species distributions in mountain forests of Washington State, USA. The Forestry Chronicle, 79(2), 253‒258. doi: https://doi.org/10.5558/tfc79253-2

Mendoza, M. E., López-Granados, E., Geneletti, D., Pérez-Salicrup, D. R., & Salinas, V. (2011). Analyzing land cover and land use change processes at watershed level: a multitemporal study in the Lake Cuitzeo Watershed, Mexico (1975-2003). Applied Geography, 31, 237‒250. doi: https://doi.org/10.1016/j.apgeog.2010.05.010

Montagnini, F., Ibrahim, M., & Murgueitio-Restrepo, E. (2013). Silvopastoral systems and climate change mitigation in Latin America. Bois et Forêts des Tropiques, 316(2), 3‒16. doi: https://doi.org/10.19182/bft2013.316.a20528

Mosquera-Losada, M. R., McAdam, J. H., Romero-Franco, R., Santiago-Freijanes, J. J., & Rigueiro-Rodríguez, A. (2009). Definitions and components of agroforestry practices in Europe. In A. Rigueiro-Rodríguez, J. McAdam, & M. R. Mosquera-Losada (Eds.), Agroforestry in Europe (pp. 3‒19). Dordrecht, Alemania: Springer.

Newbold, T., Gilbert, F., Zalat, S., El-Gabbas, A., & Reader, T. (2009). Climate-based models of spatial patterns of species richness in Egypt´s butterfly and mammal fauna. Journal of Biogeography, 36(11), 2085‒2095. doi: https://doi.org/10.1111/j.1365-2699.2009.02140.x

Osorio-Olvera L., Lira‐Noriega, A., Soberón, J., Townsend Peterson, A., Falconi, M., Contreras‐Díaz, R. G., Martínez‐Meyer, E., … Barve, N. (2020). ntbox: An R package with graphical user interface for modeling and evaluating multidimensional ecological niches. Methods in Ecology and Evolution, 11(10), 1199–1206. doi: https://doi.org/10.1111/2041-210X.13452

Pérez-Miranda, R., Moreno-Sánchez, F., González-Hernández, A., & Arriola-Padilla, V. J. (2014). Distribution of Abies religiosa (Kunth) Schltdl. et Cham. and Pinus montezumae Lamb. in the face of climate change. Revista Mexicana de Ciencias Forestales, 5(25), 18‒33. doi: https://doi.org/10.29298/rmcf.v5i25.301

Pérez-Nieto, J., Valdés-Velarde, E., & Ordaz-Chaparro, V. M. (2012). Cobertura vegetal y erosión del suelo en sistemas agroforestales de café bajo sombra. Terra Latinoamericana, 30(3), 249‒259. Retrieved from https://www.redalyc.org/articulo.oa?id=57325509001

Peterson, A. T., Soberón, J., Pearson, R. G., Anderson, R. P., Martínez-Meyer, E., Nakamura, M., & Bastos-Araújo, M. (2011). Ecological niches and geographic distributions. New Jersey, USA: Princeton University Press.

Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231‒259. doi: https://doi.org/10.1016/j.ecolmodel.2005.03.026

Ponsens, J., Hanson, J., Schellberg, J., & Moeseler, B. M. (2010). Characterization of phenotypic diversity, yield and response to drought stress in a collection of Rhodes grass (Chloris gayana Kunth) accessions. Field Crops Research, 118(1), 57‒72. doi: https://doi.org/10.1016/j.fcr.2010.04.008

R Core Team. (2017). A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved October 14, 2018 from http://www.R-project.org/

Ramos-Uvilla, J. A., García-Magaña, J. J., Hernández-Ramos, J., García-Cuevas, X., Velarde-Ramírez, J. C., Muñoz-Flores, H. J., & García-Espinoza, G. G. (2014). Equations and volume tables for two Pinus species of la Sierra Purhépecha, Michoacán. Revista Mexicana de Ciencias Forestales, 5(23), 92‒109. doi: https://doi.org/10.29298/rmcf.v5i23.344

Rueda-Sánchez, A., Benavides-Solorio, J. D., Prieto-Ruíz, J. A., Sáenz-Reyes, J. T., Orozco-Gutiérrez, G., & Molina-Castañeda, A. (2012). Quality of plants produced in forest nurseries in Jalisco. Revista Mexicana de Ciencias Forestales, 3(14), 69‒82. doi: https://doi.org/10.29298/rmcf.v3i14.475

Sáenz-Reyes, J. T., Castillo-Quiroz, D., Ávila-Flores, D. Y., Castillo-Reyes, F., Muñoz-Flores, H. J., & Rueda-Sánchez, A. (2019). Potential areas for silvopastoral systems with pine lacio (Pinus devoniana Lind.) and introduced grasses (Eragrostis curvula (Schrad.) Nees or Chloris gayana Kunth) in Michoacán, México. Revista Bio Ciencias, 6:e494. doi: https://doi.org/10.15741/revbio.06.e494

Sáenz-Reyes, J. T., Jiménez-Ochoa, J., Muñoz-Flores, H. J., Rueda-Sánchez, A., Sáenz-Ceja, J. E., & Hernández-Ramos, J. (2016). Fertilización en sistema silvopastoril en la cuenca del lago de Pátzcuaro, Michoacán. Revista Mitigación del Daño Ambiental, Agroalimentario y Forestal de México, 2(2), 178‒187. Retrieved from https://www.researchgate.net/publication/327881246_Fertilizacion_en_sistema_silvopastoril_en_la_cuenca_del_Lago_de_Patzcuaro_Michoacan

Sáenz-Reyes, J. T., Muñoz-Flores, H. J., & Rueda-Sánchez, A. (2011). Especies promisorias de clima templado para plantaciones forestales comerciales en Michoacán. México: Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias, Campo Experimental Uruapan.

Schussman, H., Geiger, E., Mau-Crimmins, T., & Ward, J. (2006). Spread and current potential distribution of an alien grass, Eragrostis lehmanniana Nees, in the southwestern USA: Comparing historical data and ecological niche models. Diversity and Distributions, 12, 582‒592. doi: https://doi.org/10.1111/j.1366-9516.2006.00268.x

Slater, H., & Michael, E. (2012). Predicting the current and future potential distributions of lymphatic filariasis in Africa using maximum entropy ecological niche modelling. PloS ONE, 7(2), e32202. doi: https://doi.org/10.1371/journal.pone.0032202

United States Geological Survey (USGS). (2000). Retrieved December 9, 2018 from https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-global-30-arc-second-elevation-gtopo30?qt-science_center_objects=0#qt-science_center_objects

Valdés-Reyna, J. (2015). Gramíneas de Coahuila. México: Comisión Nacional para el Conocimiento y Uso de la Biodiversidad.

Ward, D., Kirkman, K., & Tsvuura, Z. (2017). An African grassland responds similarly to long-term fertilization to the Park Grass experiment. PloS ONE, 12(5), e01177208. doi: https://doi.org/10.1371/journal.pone.0177208

Winkler, D. E., Lin, M. Y., Delgadillo, J., Chapin, K. J., & Huxman, T. E. (2019). Early life history responses and phenotypic shifts in a rare endemic plant responding to climate change. Conservation Physiology, 7(1), coz076. doi: https://doi.org/10.1093/conphys/coz076

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2023 Revista Chapingo Serie Ciencias Forestales y del Ambiente